mirror of
https://github.com/nmap/nmap.git
synced 2025-12-28 18:39:03 +00:00
Merge branch 'nse-lua53'
Lua 5.3 adds several awesome features of particular interest to nmap including bitwise operators and integers, a utf8 library, and standard binary pack/unpack functions. In addition to adding Lua 5.3, this branch changes: o Complete removal of the NSE bit library (in C), It has been replaced with a new Lua library wrapping Lua 5.3's bit-wise operators. o Complete removal of the NSE bin library (in C). It has been replaced with a new Lua library wrapping Lua 5.3's string.pack|unpack functions. o The bin.pack "B" format specifier (which has never worked correctly) is unimplemented. All scripts/libraries which use it have been updated. Most usage of this option was to allow string based bit-wise operations which are no longer necessary now that Lua 5.3 provides integers and bit-wise operators. o The base32/base64 libraries have been reimplemented using Lua 5.3's new bitwise operators. (This library was the main user of the bin.pack "B" format specifier.) o A new "bits" library has been added for common bit hacks. Currently only has a reverse function. Thanks to David Fifield, Daniel Miller, Jacek Wielemborek, and Paulino Calderon for testing this branch.
This commit is contained in:
427
liblua/ltable.c
427
liblua/ltable.c
@@ -1,27 +1,30 @@
|
||||
/*
|
||||
** $Id: ltable.c,v 2.72.1.1 2013/04/12 18:48:47 roberto Exp $
|
||||
** $Id: ltable.c,v 2.117 2015/11/19 19:16:22 roberto Exp $
|
||||
** Lua tables (hash)
|
||||
** See Copyright Notice in lua.h
|
||||
*/
|
||||
|
||||
#define ltable_c
|
||||
#define LUA_CORE
|
||||
|
||||
#include "lprefix.h"
|
||||
|
||||
|
||||
/*
|
||||
** Implementation of tables (aka arrays, objects, or hash tables).
|
||||
** Tables keep its elements in two parts: an array part and a hash part.
|
||||
** Non-negative integer keys are all candidates to be kept in the array
|
||||
** part. The actual size of the array is the largest `n' such that at
|
||||
** least half the slots between 0 and n are in use.
|
||||
** part. The actual size of the array is the largest 'n' such that
|
||||
** more than half the slots between 1 and n are in use.
|
||||
** Hash uses a mix of chained scatter table with Brent's variation.
|
||||
** A main invariant of these tables is that, if an element is not
|
||||
** in its main position (i.e. the `original' position that its hash gives
|
||||
** in its main position (i.e. the 'original' position that its hash gives
|
||||
** to it), then the colliding element is in its own main position.
|
||||
** Hence even when the load factor reaches 100%, performance remains good.
|
||||
*/
|
||||
|
||||
#include <string.h>
|
||||
|
||||
#define ltable_c
|
||||
#define LUA_CORE
|
||||
#include <math.h>
|
||||
#include <limits.h>
|
||||
|
||||
#include "lua.h"
|
||||
|
||||
@@ -37,21 +40,26 @@
|
||||
|
||||
|
||||
/*
|
||||
** max size of array part is 2^MAXBITS
|
||||
** Maximum size of array part (MAXASIZE) is 2^MAXABITS. MAXABITS is
|
||||
** the largest integer such that MAXASIZE fits in an unsigned int.
|
||||
*/
|
||||
#if LUAI_BITSINT >= 32
|
||||
#define MAXBITS 30
|
||||
#else
|
||||
#define MAXBITS (LUAI_BITSINT-2)
|
||||
#endif
|
||||
#define MAXABITS cast_int(sizeof(int) * CHAR_BIT - 1)
|
||||
#define MAXASIZE (1u << MAXABITS)
|
||||
|
||||
#define MAXASIZE (1 << MAXBITS)
|
||||
/*
|
||||
** Maximum size of hash part is 2^MAXHBITS. MAXHBITS is the largest
|
||||
** integer such that 2^MAXHBITS fits in a signed int. (Note that the
|
||||
** maximum number of elements in a table, 2^MAXABITS + 2^MAXHBITS, still
|
||||
** fits comfortably in an unsigned int.)
|
||||
*/
|
||||
#define MAXHBITS (MAXABITS - 1)
|
||||
|
||||
|
||||
#define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t))))
|
||||
|
||||
#define hashstr(t,str) hashpow2(t, (str)->tsv.hash)
|
||||
#define hashstr(t,str) hashpow2(t, (str)->hash)
|
||||
#define hashboolean(t,p) hashpow2(t, p)
|
||||
#define hashint(t,i) hashpow2(t, i)
|
||||
|
||||
|
||||
/*
|
||||
@@ -61,7 +69,7 @@
|
||||
#define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1))))
|
||||
|
||||
|
||||
#define hashpointer(t,p) hashmod(t, IntPoint(p))
|
||||
#define hashpointer(t,p) hashmod(t, point2uint(p))
|
||||
|
||||
|
||||
#define dummynode (&dummynode_)
|
||||
@@ -70,44 +78,54 @@
|
||||
|
||||
static const Node dummynode_ = {
|
||||
{NILCONSTANT}, /* value */
|
||||
{{NILCONSTANT, NULL}} /* key */
|
||||
{{NILCONSTANT, 0}} /* key */
|
||||
};
|
||||
|
||||
|
||||
/*
|
||||
** hash for lua_Numbers
|
||||
** Hash for floating-point numbers.
|
||||
** The main computation should be just
|
||||
** n = frexp(n, &i); return (n * INT_MAX) + i
|
||||
** but there are some numerical subtleties.
|
||||
** In a two-complement representation, INT_MAX does not has an exact
|
||||
** representation as a float, but INT_MIN does; because the absolute
|
||||
** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the
|
||||
** absolute value of the product 'frexp * -INT_MIN' is smaller or equal
|
||||
** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when
|
||||
** adding 'i'; the use of '~u' (instead of '-u') avoids problems with
|
||||
** INT_MIN.
|
||||
*/
|
||||
static Node *hashnum (const Table *t, lua_Number n) {
|
||||
#if !defined(l_hashfloat)
|
||||
static int l_hashfloat (lua_Number n) {
|
||||
int i;
|
||||
luai_hashnum(i, n);
|
||||
if (i < 0) {
|
||||
if (cast(unsigned int, i) == 0u - i) /* use unsigned to avoid overflows */
|
||||
i = 0; /* handle INT_MIN */
|
||||
i = -i; /* must be a positive value */
|
||||
lua_Integer ni;
|
||||
n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN);
|
||||
if (!lua_numbertointeger(n, &ni)) { /* is 'n' inf/-inf/NaN? */
|
||||
lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL));
|
||||
return 0;
|
||||
}
|
||||
else { /* normal case */
|
||||
unsigned int u = cast(unsigned int, i) + cast(unsigned int, ni);
|
||||
return cast_int(u <= cast(unsigned int, INT_MAX) ? u : ~u);
|
||||
}
|
||||
return hashmod(t, i);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
** returns the `main' position of an element in a table (that is, the index
|
||||
** returns the 'main' position of an element in a table (that is, the index
|
||||
** of its hash value)
|
||||
*/
|
||||
static Node *mainposition (const Table *t, const TValue *key) {
|
||||
switch (ttype(key)) {
|
||||
case LUA_TNUMBER:
|
||||
return hashnum(t, nvalue(key));
|
||||
case LUA_TLNGSTR: {
|
||||
TString *s = rawtsvalue(key);
|
||||
if (s->tsv.extra == 0) { /* no hash? */
|
||||
s->tsv.hash = luaS_hash(getstr(s), s->tsv.len, s->tsv.hash);
|
||||
s->tsv.extra = 1; /* now it has its hash */
|
||||
}
|
||||
return hashstr(t, rawtsvalue(key));
|
||||
}
|
||||
case LUA_TNUMINT:
|
||||
return hashint(t, ivalue(key));
|
||||
case LUA_TNUMFLT:
|
||||
return hashmod(t, l_hashfloat(fltvalue(key)));
|
||||
case LUA_TSHRSTR:
|
||||
return hashstr(t, rawtsvalue(key));
|
||||
return hashstr(t, tsvalue(key));
|
||||
case LUA_TLNGSTR:
|
||||
return hashpow2(t, luaS_hashlongstr(tsvalue(key)));
|
||||
case LUA_TBOOLEAN:
|
||||
return hashboolean(t, bvalue(key));
|
||||
case LUA_TLIGHTUSERDATA:
|
||||
@@ -115,67 +133,68 @@ static Node *mainposition (const Table *t, const TValue *key) {
|
||||
case LUA_TLCF:
|
||||
return hashpointer(t, fvalue(key));
|
||||
default:
|
||||
lua_assert(!ttisdeadkey(key));
|
||||
return hashpointer(t, gcvalue(key));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** returns the index for `key' if `key' is an appropriate key to live in
|
||||
** the array part of the table, -1 otherwise.
|
||||
** returns the index for 'key' if 'key' is an appropriate key to live in
|
||||
** the array part of the table, 0 otherwise.
|
||||
*/
|
||||
static int arrayindex (const TValue *key) {
|
||||
if (ttisnumber(key)) {
|
||||
lua_Number n = nvalue(key);
|
||||
int k;
|
||||
lua_number2int(k, n);
|
||||
if (luai_numeq(cast_num(k), n))
|
||||
return k;
|
||||
static unsigned int arrayindex (const TValue *key) {
|
||||
if (ttisinteger(key)) {
|
||||
lua_Integer k = ivalue(key);
|
||||
if (0 < k && (lua_Unsigned)k <= MAXASIZE)
|
||||
return cast(unsigned int, k); /* 'key' is an appropriate array index */
|
||||
}
|
||||
return -1; /* `key' did not match some condition */
|
||||
return 0; /* 'key' did not match some condition */
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** returns the index of a `key' for table traversals. First goes all
|
||||
** returns the index of a 'key' for table traversals. First goes all
|
||||
** elements in the array part, then elements in the hash part. The
|
||||
** beginning of a traversal is signaled by -1.
|
||||
** beginning of a traversal is signaled by 0.
|
||||
*/
|
||||
static int findindex (lua_State *L, Table *t, StkId key) {
|
||||
int i;
|
||||
if (ttisnil(key)) return -1; /* first iteration */
|
||||
static unsigned int findindex (lua_State *L, Table *t, StkId key) {
|
||||
unsigned int i;
|
||||
if (ttisnil(key)) return 0; /* first iteration */
|
||||
i = arrayindex(key);
|
||||
if (0 < i && i <= t->sizearray) /* is `key' inside array part? */
|
||||
return i-1; /* yes; that's the index (corrected to C) */
|
||||
if (i != 0 && i <= t->sizearray) /* is 'key' inside array part? */
|
||||
return i; /* yes; that's the index */
|
||||
else {
|
||||
int nx;
|
||||
Node *n = mainposition(t, key);
|
||||
for (;;) { /* check whether `key' is somewhere in the chain */
|
||||
/* key may be dead already, but it is ok to use it in `next' */
|
||||
for (;;) { /* check whether 'key' is somewhere in the chain */
|
||||
/* key may be dead already, but it is ok to use it in 'next' */
|
||||
if (luaV_rawequalobj(gkey(n), key) ||
|
||||
(ttisdeadkey(gkey(n)) && iscollectable(key) &&
|
||||
deadvalue(gkey(n)) == gcvalue(key))) {
|
||||
i = cast_int(n - gnode(t, 0)); /* key index in hash table */
|
||||
/* hash elements are numbered after array ones */
|
||||
return i + t->sizearray;
|
||||
return (i + 1) + t->sizearray;
|
||||
}
|
||||
else n = gnext(n);
|
||||
if (n == NULL)
|
||||
luaG_runerror(L, "invalid key to " LUA_QL("next")); /* key not found */
|
||||
nx = gnext(n);
|
||||
if (nx == 0)
|
||||
luaG_runerror(L, "invalid key to 'next'"); /* key not found */
|
||||
else n += nx;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int luaH_next (lua_State *L, Table *t, StkId key) {
|
||||
int i = findindex(L, t, key); /* find original element */
|
||||
for (i++; i < t->sizearray; i++) { /* try first array part */
|
||||
unsigned int i = findindex(L, t, key); /* find original element */
|
||||
for (; i < t->sizearray; i++) { /* try first array part */
|
||||
if (!ttisnil(&t->array[i])) { /* a non-nil value? */
|
||||
setnvalue(key, cast_num(i+1));
|
||||
setivalue(key, i + 1);
|
||||
setobj2s(L, key+1, &t->array[i]);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
for (i -= t->sizearray; i < sizenode(t); i++) { /* then hash part */
|
||||
for (i -= t->sizearray; cast_int(i) < sizenode(t); i++) { /* hash part */
|
||||
if (!ttisnil(gval(gnode(t, i)))) { /* a non-nil value? */
|
||||
setobj2s(L, key, gkey(gnode(t, i)));
|
||||
setobj2s(L, key+1, gval(gnode(t, i)));
|
||||
@@ -192,32 +211,38 @@ int luaH_next (lua_State *L, Table *t, StkId key) {
|
||||
** ==============================================================
|
||||
*/
|
||||
|
||||
|
||||
static int computesizes (int nums[], int *narray) {
|
||||
/*
|
||||
** Compute the optimal size for the array part of table 't'. 'nums' is a
|
||||
** "count array" where 'nums[i]' is the number of integers in the table
|
||||
** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of
|
||||
** integer keys in the table and leaves with the number of keys that
|
||||
** will go to the array part; return the optimal size.
|
||||
*/
|
||||
static unsigned int computesizes (unsigned int nums[], unsigned int *pna) {
|
||||
int i;
|
||||
int twotoi; /* 2^i */
|
||||
int a = 0; /* number of elements smaller than 2^i */
|
||||
int na = 0; /* number of elements to go to array part */
|
||||
int n = 0; /* optimal size for array part */
|
||||
for (i = 0, twotoi = 1; twotoi/2 < *narray; i++, twotoi *= 2) {
|
||||
unsigned int twotoi; /* 2^i (candidate for optimal size) */
|
||||
unsigned int a = 0; /* number of elements smaller than 2^i */
|
||||
unsigned int na = 0; /* number of elements to go to array part */
|
||||
unsigned int optimal = 0; /* optimal size for array part */
|
||||
/* loop while keys can fill more than half of total size */
|
||||
for (i = 0, twotoi = 1; *pna > twotoi / 2; i++, twotoi *= 2) {
|
||||
if (nums[i] > 0) {
|
||||
a += nums[i];
|
||||
if (a > twotoi/2) { /* more than half elements present? */
|
||||
n = twotoi; /* optimal size (till now) */
|
||||
na = a; /* all elements smaller than n will go to array part */
|
||||
optimal = twotoi; /* optimal size (till now) */
|
||||
na = a; /* all elements up to 'optimal' will go to array part */
|
||||
}
|
||||
}
|
||||
if (a == *narray) break; /* all elements already counted */
|
||||
}
|
||||
*narray = n;
|
||||
lua_assert(*narray/2 <= na && na <= *narray);
|
||||
return na;
|
||||
lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal);
|
||||
*pna = na;
|
||||
return optimal;
|
||||
}
|
||||
|
||||
|
||||
static int countint (const TValue *key, int *nums) {
|
||||
int k = arrayindex(key);
|
||||
if (0 < k && k <= MAXASIZE) { /* is `key' an appropriate array index? */
|
||||
static int countint (const TValue *key, unsigned int *nums) {
|
||||
unsigned int k = arrayindex(key);
|
||||
if (k != 0) { /* is 'key' an appropriate array index? */
|
||||
nums[luaO_ceillog2(k)]++; /* count as such */
|
||||
return 1;
|
||||
}
|
||||
@@ -226,20 +251,26 @@ static int countint (const TValue *key, int *nums) {
|
||||
}
|
||||
|
||||
|
||||
static int numusearray (const Table *t, int *nums) {
|
||||
/*
|
||||
** Count keys in array part of table 't': Fill 'nums[i]' with
|
||||
** number of keys that will go into corresponding slice and return
|
||||
** total number of non-nil keys.
|
||||
*/
|
||||
static unsigned int numusearray (const Table *t, unsigned int *nums) {
|
||||
int lg;
|
||||
int ttlg; /* 2^lg */
|
||||
int ause = 0; /* summation of `nums' */
|
||||
int i = 1; /* count to traverse all array keys */
|
||||
for (lg=0, ttlg=1; lg<=MAXBITS; lg++, ttlg*=2) { /* for each slice */
|
||||
int lc = 0; /* counter */
|
||||
int lim = ttlg;
|
||||
unsigned int ttlg; /* 2^lg */
|
||||
unsigned int ause = 0; /* summation of 'nums' */
|
||||
unsigned int i = 1; /* count to traverse all array keys */
|
||||
/* traverse each slice */
|
||||
for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) {
|
||||
unsigned int lc = 0; /* counter */
|
||||
unsigned int lim = ttlg;
|
||||
if (lim > t->sizearray) {
|
||||
lim = t->sizearray; /* adjust upper limit */
|
||||
if (i > lim)
|
||||
break; /* no more elements to count */
|
||||
}
|
||||
/* count elements in range (2^(lg-1), 2^lg] */
|
||||
/* count elements in range (2^(lg - 1), 2^lg] */
|
||||
for (; i <= lim; i++) {
|
||||
if (!ttisnil(&t->array[i-1]))
|
||||
lc++;
|
||||
@@ -251,9 +282,9 @@ static int numusearray (const Table *t, int *nums) {
|
||||
}
|
||||
|
||||
|
||||
static int numusehash (const Table *t, int *nums, int *pnasize) {
|
||||
static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) {
|
||||
int totaluse = 0; /* total number of elements */
|
||||
int ause = 0; /* summation of `nums' */
|
||||
int ause = 0; /* elements added to 'nums' (can go to array part) */
|
||||
int i = sizenode(t);
|
||||
while (i--) {
|
||||
Node *n = &t->node[i];
|
||||
@@ -262,13 +293,13 @@ static int numusehash (const Table *t, int *nums, int *pnasize) {
|
||||
totaluse++;
|
||||
}
|
||||
}
|
||||
*pnasize += ause;
|
||||
*pna += ause;
|
||||
return totaluse;
|
||||
}
|
||||
|
||||
|
||||
static void setarrayvector (lua_State *L, Table *t, int size) {
|
||||
int i;
|
||||
static void setarrayvector (lua_State *L, Table *t, unsigned int size) {
|
||||
unsigned int i;
|
||||
luaM_reallocvector(L, t->array, t->sizearray, size, TValue);
|
||||
for (i=t->sizearray; i<size; i++)
|
||||
setnilvalue(&t->array[i]);
|
||||
@@ -276,23 +307,23 @@ static void setarrayvector (lua_State *L, Table *t, int size) {
|
||||
}
|
||||
|
||||
|
||||
static void setnodevector (lua_State *L, Table *t, int size) {
|
||||
static void setnodevector (lua_State *L, Table *t, unsigned int size) {
|
||||
int lsize;
|
||||
if (size == 0) { /* no elements to hash part? */
|
||||
t->node = cast(Node *, dummynode); /* use common `dummynode' */
|
||||
t->node = cast(Node *, dummynode); /* use common 'dummynode' */
|
||||
lsize = 0;
|
||||
}
|
||||
else {
|
||||
int i;
|
||||
lsize = luaO_ceillog2(size);
|
||||
if (lsize > MAXBITS)
|
||||
if (lsize > MAXHBITS)
|
||||
luaG_runerror(L, "table overflow");
|
||||
size = twoto(lsize);
|
||||
t->node = luaM_newvector(L, size, Node);
|
||||
for (i=0; i<size; i++) {
|
||||
for (i = 0; i < (int)size; i++) {
|
||||
Node *n = gnode(t, i);
|
||||
gnext(n) = NULL;
|
||||
setnilvalue(gkey(n));
|
||||
gnext(n) = 0;
|
||||
setnilvalue(wgkey(n));
|
||||
setnilvalue(gval(n));
|
||||
}
|
||||
}
|
||||
@@ -301,9 +332,11 @@ static void setnodevector (lua_State *L, Table *t, int size) {
|
||||
}
|
||||
|
||||
|
||||
void luaH_resize (lua_State *L, Table *t, int nasize, int nhsize) {
|
||||
int i;
|
||||
int oldasize = t->sizearray;
|
||||
void luaH_resize (lua_State *L, Table *t, unsigned int nasize,
|
||||
unsigned int nhsize) {
|
||||
unsigned int i;
|
||||
int j;
|
||||
unsigned int oldasize = t->sizearray;
|
||||
int oldhsize = t->lsizenode;
|
||||
Node *nold = t->node; /* save old hash ... */
|
||||
if (nasize > oldasize) /* array part must grow? */
|
||||
@@ -321,8 +354,8 @@ void luaH_resize (lua_State *L, Table *t, int nasize, int nhsize) {
|
||||
luaM_reallocvector(L, t->array, oldasize, nasize, TValue);
|
||||
}
|
||||
/* re-insert elements from hash part */
|
||||
for (i = twoto(oldhsize) - 1; i >= 0; i--) {
|
||||
Node *old = nold+i;
|
||||
for (j = twoto(oldhsize) - 1; j >= 0; j--) {
|
||||
Node *old = nold + j;
|
||||
if (!ttisnil(gval(old))) {
|
||||
/* doesn't need barrier/invalidate cache, as entry was
|
||||
already present in the table */
|
||||
@@ -330,32 +363,35 @@ void luaH_resize (lua_State *L, Table *t, int nasize, int nhsize) {
|
||||
}
|
||||
}
|
||||
if (!isdummy(nold))
|
||||
luaM_freearray(L, nold, cast(size_t, twoto(oldhsize))); /* free old array */
|
||||
luaM_freearray(L, nold, cast(size_t, twoto(oldhsize))); /* free old hash */
|
||||
}
|
||||
|
||||
|
||||
void luaH_resizearray (lua_State *L, Table *t, int nasize) {
|
||||
void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) {
|
||||
int nsize = isdummy(t->node) ? 0 : sizenode(t);
|
||||
luaH_resize(L, t, nasize, nsize);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i
|
||||
*/
|
||||
static void rehash (lua_State *L, Table *t, const TValue *ek) {
|
||||
int nasize, na;
|
||||
int nums[MAXBITS+1]; /* nums[i] = number of keys with 2^(i-1) < k <= 2^i */
|
||||
unsigned int asize; /* optimal size for array part */
|
||||
unsigned int na; /* number of keys in the array part */
|
||||
unsigned int nums[MAXABITS + 1];
|
||||
int i;
|
||||
int totaluse;
|
||||
for (i=0; i<=MAXBITS; i++) nums[i] = 0; /* reset counts */
|
||||
nasize = numusearray(t, nums); /* count keys in array part */
|
||||
totaluse = nasize; /* all those keys are integer keys */
|
||||
totaluse += numusehash(t, nums, &nasize); /* count keys in hash part */
|
||||
for (i = 0; i <= MAXABITS; i++) nums[i] = 0; /* reset counts */
|
||||
na = numusearray(t, nums); /* count keys in array part */
|
||||
totaluse = na; /* all those keys are integer keys */
|
||||
totaluse += numusehash(t, nums, &na); /* count keys in hash part */
|
||||
/* count extra key */
|
||||
nasize += countint(ek, nums);
|
||||
na += countint(ek, nums);
|
||||
totaluse++;
|
||||
/* compute new size for array part */
|
||||
na = computesizes(nums, &nasize);
|
||||
asize = computesizes(nums, &na);
|
||||
/* resize the table to new computed sizes */
|
||||
luaH_resize(L, t, nasize, totaluse - na);
|
||||
luaH_resize(L, t, asize, totaluse - na);
|
||||
}
|
||||
|
||||
|
||||
@@ -366,7 +402,8 @@ static void rehash (lua_State *L, Table *t, const TValue *ek) {
|
||||
|
||||
|
||||
Table *luaH_new (lua_State *L) {
|
||||
Table *t = &luaC_newobj(L, LUA_TTABLE, sizeof(Table), NULL, 0)->h;
|
||||
GCObject *o = luaC_newobj(L, LUA_TTABLE, sizeof(Table));
|
||||
Table *t = gco2t(o);
|
||||
t->metatable = NULL;
|
||||
t->flags = cast_byte(~0);
|
||||
t->array = NULL;
|
||||
@@ -404,37 +441,51 @@ static Node *getfreepos (Table *t) {
|
||||
*/
|
||||
TValue *luaH_newkey (lua_State *L, Table *t, const TValue *key) {
|
||||
Node *mp;
|
||||
TValue aux;
|
||||
if (ttisnil(key)) luaG_runerror(L, "table index is nil");
|
||||
else if (ttisnumber(key) && luai_numisnan(L, nvalue(key)))
|
||||
luaG_runerror(L, "table index is NaN");
|
||||
else if (ttisfloat(key)) {
|
||||
lua_Integer k;
|
||||
if (luaV_tointeger(key, &k, 0)) { /* index is int? */
|
||||
setivalue(&aux, k);
|
||||
key = &aux; /* insert it as an integer */
|
||||
}
|
||||
else if (luai_numisnan(fltvalue(key)))
|
||||
luaG_runerror(L, "table index is NaN");
|
||||
}
|
||||
mp = mainposition(t, key);
|
||||
if (!ttisnil(gval(mp)) || isdummy(mp)) { /* main position is taken? */
|
||||
Node *othern;
|
||||
Node *n = getfreepos(t); /* get a free place */
|
||||
if (n == NULL) { /* cannot find a free place? */
|
||||
Node *f = getfreepos(t); /* get a free place */
|
||||
if (f == NULL) { /* cannot find a free place? */
|
||||
rehash(L, t, key); /* grow table */
|
||||
/* whatever called 'newkey' take care of TM cache and GC barrier */
|
||||
/* whatever called 'newkey' takes care of TM cache */
|
||||
return luaH_set(L, t, key); /* insert key into grown table */
|
||||
}
|
||||
lua_assert(!isdummy(n));
|
||||
lua_assert(!isdummy(f));
|
||||
othern = mainposition(t, gkey(mp));
|
||||
if (othern != mp) { /* is colliding node out of its main position? */
|
||||
/* yes; move colliding node into free position */
|
||||
while (gnext(othern) != mp) othern = gnext(othern); /* find previous */
|
||||
gnext(othern) = n; /* redo the chain with `n' in place of `mp' */
|
||||
*n = *mp; /* copy colliding node into free pos. (mp->next also goes) */
|
||||
gnext(mp) = NULL; /* now `mp' is free */
|
||||
while (othern + gnext(othern) != mp) /* find previous */
|
||||
othern += gnext(othern);
|
||||
gnext(othern) = cast_int(f - othern); /* rechain to point to 'f' */
|
||||
*f = *mp; /* copy colliding node into free pos. (mp->next also goes) */
|
||||
if (gnext(mp) != 0) {
|
||||
gnext(f) += cast_int(mp - f); /* correct 'next' */
|
||||
gnext(mp) = 0; /* now 'mp' is free */
|
||||
}
|
||||
setnilvalue(gval(mp));
|
||||
}
|
||||
else { /* colliding node is in its own main position */
|
||||
/* new node will go into free position */
|
||||
gnext(n) = gnext(mp); /* chain new position */
|
||||
gnext(mp) = n;
|
||||
mp = n;
|
||||
if (gnext(mp) != 0)
|
||||
gnext(f) = cast_int((mp + gnext(mp)) - f); /* chain new position */
|
||||
else lua_assert(gnext(f) == 0);
|
||||
gnext(mp) = cast_int(f - mp);
|
||||
mp = f;
|
||||
}
|
||||
}
|
||||
setobj2t(L, gkey(mp), key);
|
||||
luaC_barrierback(L, obj2gco(t), key);
|
||||
setnodekey(L, &mp->i_key, key);
|
||||
luaC_barrierback(L, t, key);
|
||||
lua_assert(ttisnil(gval(mp)));
|
||||
return gval(mp);
|
||||
}
|
||||
@@ -443,18 +494,21 @@ TValue *luaH_newkey (lua_State *L, Table *t, const TValue *key) {
|
||||
/*
|
||||
** search function for integers
|
||||
*/
|
||||
const TValue *luaH_getint (Table *t, int key) {
|
||||
const TValue *luaH_getint (Table *t, lua_Integer key) {
|
||||
/* (1 <= key && key <= t->sizearray) */
|
||||
if (cast(unsigned int, key-1) < cast(unsigned int, t->sizearray))
|
||||
return &t->array[key-1];
|
||||
if (l_castS2U(key) - 1 < t->sizearray)
|
||||
return &t->array[key - 1];
|
||||
else {
|
||||
lua_Number nk = cast_num(key);
|
||||
Node *n = hashnum(t, nk);
|
||||
do { /* check whether `key' is somewhere in the chain */
|
||||
if (ttisnumber(gkey(n)) && luai_numeq(nvalue(gkey(n)), nk))
|
||||
Node *n = hashint(t, key);
|
||||
for (;;) { /* check whether 'key' is somewhere in the chain */
|
||||
if (ttisinteger(gkey(n)) && ivalue(gkey(n)) == key)
|
||||
return gval(n); /* that's it */
|
||||
else n = gnext(n);
|
||||
} while (n);
|
||||
else {
|
||||
int nx = gnext(n);
|
||||
if (nx == 0) break;
|
||||
n += nx;
|
||||
}
|
||||
}
|
||||
return luaO_nilobject;
|
||||
}
|
||||
}
|
||||
@@ -463,15 +517,50 @@ const TValue *luaH_getint (Table *t, int key) {
|
||||
/*
|
||||
** search function for short strings
|
||||
*/
|
||||
const TValue *luaH_getstr (Table *t, TString *key) {
|
||||
const TValue *luaH_getshortstr (Table *t, TString *key) {
|
||||
Node *n = hashstr(t, key);
|
||||
lua_assert(key->tsv.tt == LUA_TSHRSTR);
|
||||
do { /* check whether `key' is somewhere in the chain */
|
||||
if (ttisshrstring(gkey(n)) && eqshrstr(rawtsvalue(gkey(n)), key))
|
||||
lua_assert(key->tt == LUA_TSHRSTR);
|
||||
for (;;) { /* check whether 'key' is somewhere in the chain */
|
||||
const TValue *k = gkey(n);
|
||||
if (ttisshrstring(k) && eqshrstr(tsvalue(k), key))
|
||||
return gval(n); /* that's it */
|
||||
else n = gnext(n);
|
||||
} while (n);
|
||||
return luaO_nilobject;
|
||||
else {
|
||||
int nx = gnext(n);
|
||||
if (nx == 0)
|
||||
return luaO_nilobject; /* not found */
|
||||
n += nx;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** "Generic" get version. (Not that generic: not valid for integers,
|
||||
** which may be in array part, nor for floats with integral values.)
|
||||
*/
|
||||
static const TValue *getgeneric (Table *t, const TValue *key) {
|
||||
Node *n = mainposition(t, key);
|
||||
for (;;) { /* check whether 'key' is somewhere in the chain */
|
||||
if (luaV_rawequalobj(gkey(n), key))
|
||||
return gval(n); /* that's it */
|
||||
else {
|
||||
int nx = gnext(n);
|
||||
if (nx == 0)
|
||||
return luaO_nilobject; /* not found */
|
||||
n += nx;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
const TValue *luaH_getstr (Table *t, TString *key) {
|
||||
if (key->tt == LUA_TSHRSTR)
|
||||
return luaH_getshortstr(t, key);
|
||||
else { /* for long strings, use generic case */
|
||||
TValue ko;
|
||||
setsvalue(cast(lua_State *, NULL), &ko, key);
|
||||
return getgeneric(t, &ko);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -480,25 +569,17 @@ const TValue *luaH_getstr (Table *t, TString *key) {
|
||||
*/
|
||||
const TValue *luaH_get (Table *t, const TValue *key) {
|
||||
switch (ttype(key)) {
|
||||
case LUA_TSHRSTR: return luaH_getstr(t, rawtsvalue(key));
|
||||
case LUA_TSHRSTR: return luaH_getshortstr(t, tsvalue(key));
|
||||
case LUA_TNUMINT: return luaH_getint(t, ivalue(key));
|
||||
case LUA_TNIL: return luaO_nilobject;
|
||||
case LUA_TNUMBER: {
|
||||
int k;
|
||||
lua_Number n = nvalue(key);
|
||||
lua_number2int(k, n);
|
||||
if (luai_numeq(cast_num(k), n)) /* index is int? */
|
||||
case LUA_TNUMFLT: {
|
||||
lua_Integer k;
|
||||
if (luaV_tointeger(key, &k, 0)) /* index is int? */
|
||||
return luaH_getint(t, k); /* use specialized version */
|
||||
/* else go through */
|
||||
}
|
||||
default: {
|
||||
Node *n = mainposition(t, key);
|
||||
do { /* check whether `key' is somewhere in the chain */
|
||||
if (luaV_rawequalobj(gkey(n), key))
|
||||
return gval(n); /* that's it */
|
||||
else n = gnext(n);
|
||||
} while (n);
|
||||
return luaO_nilobject;
|
||||
}
|
||||
/* else... */
|
||||
} /* FALLTHROUGH */
|
||||
default:
|
||||
return getgeneric(t, key);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -515,14 +596,14 @@ TValue *luaH_set (lua_State *L, Table *t, const TValue *key) {
|
||||
}
|
||||
|
||||
|
||||
void luaH_setint (lua_State *L, Table *t, int key, TValue *value) {
|
||||
void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) {
|
||||
const TValue *p = luaH_getint(t, key);
|
||||
TValue *cell;
|
||||
if (p != luaO_nilobject)
|
||||
cell = cast(TValue *, p);
|
||||
else {
|
||||
TValue k;
|
||||
setnvalue(&k, cast_num(key));
|
||||
setivalue(&k, key);
|
||||
cell = luaH_newkey(L, t, &k);
|
||||
}
|
||||
setobj2t(L, cell, value);
|
||||
@@ -532,16 +613,16 @@ void luaH_setint (lua_State *L, Table *t, int key, TValue *value) {
|
||||
static int unbound_search (Table *t, unsigned int j) {
|
||||
unsigned int i = j; /* i is zero or a present index */
|
||||
j++;
|
||||
/* find `i' and `j' such that i is present and j is not */
|
||||
/* find 'i' and 'j' such that i is present and j is not */
|
||||
while (!ttisnil(luaH_getint(t, j))) {
|
||||
i = j;
|
||||
j *= 2;
|
||||
if (j > cast(unsigned int, MAX_INT)) { /* overflow? */
|
||||
if (j > cast(unsigned int, MAX_INT)/2) { /* overflow? */
|
||||
/* table was built with bad purposes: resort to linear search */
|
||||
i = 1;
|
||||
while (!ttisnil(luaH_getint(t, i))) i++;
|
||||
return i - 1;
|
||||
}
|
||||
j *= 2;
|
||||
}
|
||||
/* now do a binary search between them */
|
||||
while (j - i > 1) {
|
||||
@@ -554,7 +635,7 @@ static int unbound_search (Table *t, unsigned int j) {
|
||||
|
||||
|
||||
/*
|
||||
** Try to find a boundary in table `t'. A `boundary' is an integer index
|
||||
** Try to find a boundary in table 't'. A 'boundary' is an integer index
|
||||
** such that t[i] is non-nil and t[i+1] is nil (and 0 if t[1] is nil).
|
||||
*/
|
||||
int luaH_getn (Table *t) {
|
||||
|
||||
Reference in New Issue
Block a user