1
0
mirror of https://github.com/nmap/nmap.git synced 2025-12-06 04:31:29 +00:00
Files
nmap/libpcap/inet.c
dmiller 3d9e348832 Use a mutex on Windows to avoid a hang when accessing WinPCAP driver
Reported by multiple users on Windows 8.1 and Windows Server 2012 R2.
Seems to hang when the WinPCAP driver is accessed via OpenServiceA by
multiple processes at once. Users report that this change, which uses a
mutex to avoid concurrent access, fixes the hang.
2015-09-20 19:06:11 +00:00

1142 lines
31 KiB
C

/* -*- Mode: c; tab-width: 8; indent-tabs-mode: 1; c-basic-offset: 8; -*- */
/*
* Copyright (c) 1994, 1995, 1996, 1997, 1998
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the Computer Systems
* Engineering Group at Lawrence Berkeley Laboratory.
* 4. Neither the name of the University nor of the Laboratory may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#ifdef WIN32
#include <pcap-stdinc.h>
#else /* WIN32 */
#include <sys/param.h>
#ifndef MSDOS
#include <sys/file.h>
#endif
#include <sys/ioctl.h>
#include <sys/socket.h>
#ifdef HAVE_SYS_SOCKIO_H
#include <sys/sockio.h>
#endif
struct mbuf; /* Squelch compiler warnings on some platforms for */
struct rtentry; /* declarations in <net/if.h> */
#include <net/if.h>
#include <netinet/in.h>
#endif /* WIN32 */
#include <ctype.h>
#include <errno.h>
#include <memory.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#if !defined(WIN32) && !defined(__BORLANDC__)
#include <unistd.h>
#endif /* !WIN32 && !__BORLANDC__ */
#ifdef HAVE_LIMITS_H
#include <limits.h>
#else
#define INT_MAX 2147483647
#endif
#include "pcap-int.h"
#ifdef HAVE_OS_PROTO_H
#include "os-proto.h"
#endif
/* Not all systems have IFF_LOOPBACK */
#ifdef IFF_LOOPBACK
#define ISLOOPBACK(name, flags) ((flags) & IFF_LOOPBACK)
#else
#define ISLOOPBACK(name, flags) ((name)[0] == 'l' && (name)[1] == 'o' && \
(isdigit((unsigned char)((name)[2])) || (name)[2] == '\0'))
#endif
#ifdef IFF_UP
#define ISUP(flags) ((flags) & IFF_UP)
#else
#define ISUP(flags) 0
#endif
#ifdef IFF_RUNNING
#define ISRUNNING(flags) ((flags) & IFF_RUNNING)
#else
#define ISRUNNING(flags) 0
#endif
struct sockaddr *
dup_sockaddr(struct sockaddr *sa, size_t sa_length)
{
struct sockaddr *newsa;
if ((newsa = malloc(sa_length)) == NULL)
return (NULL);
return (memcpy(newsa, sa, sa_length));
}
/*
* Construct a "figure of merit" for an interface, for use when sorting
* the list of interfaces, in which interfaces that are up are superior
* to interfaces that aren't up, interfaces that are up and running are
* superior to interfaces that are up but not running, and non-loopback
* interfaces that are up and running are superior to loopback interfaces,
* and interfaces with the same flags have a figure of merit that's higher
* the lower the instance number.
*
* The goal is to try to put the interfaces most likely to be useful for
* capture at the beginning of the list.
*
* The figure of merit, which is lower the "better" the interface is,
* has the uppermost bit set if the interface isn't running, the bit
* below that set if the interface isn't up, the bit below that set
* if the interface is a loopback interface, and the interface index
* in the 29 bits below that. (Yes, we assume u_int is 32 bits.)
*/
static u_int
get_figure_of_merit(pcap_if_t *dev)
{
const char *cp;
u_int n;
if (strcmp(dev->name, "any") == 0) {
/*
* Give the "any" device an artificially high instance
* number, so it shows up after all other non-loopback
* interfaces.
*/
n = 0x1FFFFFFF; /* 29 all-1 bits */
} else {
/*
* A number at the end of the device name string is
* assumed to be a unit number.
*/
cp = dev->name + strlen(dev->name) - 1;
while (cp-1 >= dev->name && *(cp-1) >= '0' && *(cp-1) <= '9')
cp--;
if (*cp >= '0' && *cp <= '9')
n = atoi(cp);
else
n = 0;
}
if (!(dev->flags & PCAP_IF_RUNNING))
n |= 0x80000000;
if (!(dev->flags & PCAP_IF_UP))
n |= 0x40000000;
if (dev->flags & PCAP_IF_LOOPBACK)
n |= 0x20000000;
return (n);
}
/*
* Look for a given device in the specified list of devices.
*
* If we find it, return 0 and set *curdev_ret to point to it.
*
* If we don't find it, check whether we can open it:
*
* If that fails with PCAP_ERROR_NO_SUCH_DEVICE or
* PCAP_ERROR_IFACE_NOT_UP, don't attempt to add an entry for
* it, as that probably means it exists but doesn't support
* packet capture.
*
* Otherwise, attempt to add an entry for it, with the specified
* ifnet flags and description, and, if that succeeds, return 0
* and set *curdev_ret to point to the new entry, otherwise
* return PCAP_ERROR and set errbuf to an error message.
*/
int
add_or_find_if(pcap_if_t **curdev_ret, pcap_if_t **alldevs, const char *name,
u_int flags, const char *description, char *errbuf)
{
pcap_t *p;
pcap_if_t *curdev, *prevdev, *nextdev;
u_int this_figure_of_merit, nextdev_figure_of_merit;
char open_errbuf[PCAP_ERRBUF_SIZE];
int ret;
/*
* Is there already an entry in the list for this interface?
*/
for (curdev = *alldevs; curdev != NULL; curdev = curdev->next) {
if (strcmp(name, curdev->name) == 0)
break; /* yes, we found it */
}
if (curdev == NULL) {
/*
* No, we didn't find it.
*
* Can we open this interface for live capture?
*
* We do this check so that interfaces that are
* supplied by the interface enumeration mechanism
* we're using but that don't support packet capture
* aren't included in the list. Loopback interfaces
* on Solaris are an example of this; we don't just
* omit loopback interfaces on all platforms because
* you *can* capture on loopback interfaces on some
* OSes.
*
* On OS X, we don't do this check if the device
* name begins with "wlt"; at least some versions
* of OS X offer monitor mode capturing by having
* a separate "monitor mode" device for each wireless
* adapter, rather than by implementing the ioctls
* that {Free,Net,Open,DragonFly}BSD provide.
* Opening that device puts the adapter into monitor
* mode, which, at least for some adapters, causes
* them to deassociate from the network with which
* they're associated.
*
* Instead, we try to open the corresponding "en"
* device (so that we don't end up with, for users
* without sufficient privilege to open capture
* devices, a list of adapters that only includes
* the wlt devices).
*/
#ifdef __APPLE__
if (strncmp(name, "wlt", 3) == 0) {
char *en_name;
size_t en_name_len;
/*
* Try to allocate a buffer for the "en"
* device's name.
*/
en_name_len = strlen(name) - 1;
en_name = malloc(en_name_len + 1);
if (en_name == NULL) {
(void)snprintf(errbuf, PCAP_ERRBUF_SIZE,
"malloc: %s", pcap_strerror(errno));
return (-1);
}
strcpy(en_name, "en");
strcat(en_name, name + 3);
p = pcap_create(en_name, open_errbuf);
free(en_name);
} else
#endif /* __APPLE */
p = pcap_create(name, open_errbuf);
if (p == NULL) {
/*
* The attempt to create the pcap_t failed;
* that's probably an indication that we're
* out of memory.
*
* Don't bother including this interface,
* but don't treat it as an error.
*/
*curdev_ret = NULL;
return (0);
}
/* Small snaplen, so we don't try to allocate much memory. */
pcap_set_snaplen(p, 68);
ret = pcap_activate(p);
pcap_close(p);
switch (ret) {
case PCAP_ERROR_NO_SUCH_DEVICE:
case PCAP_ERROR_IFACE_NOT_UP:
/*
* We expect these two errors - they're the
* reason we try to open the device.
*
* PCAP_ERROR_NO_SUCH_DEVICE typically means
* "there's no such device *known to the
* OS's capture mechanism*", so, even though
* it might be a valid network interface, you
* can't capture on it (e.g., the loopback
* device in Solaris up to Solaris 10, or
* the vmnet devices in OS X with VMware
* Fusion). We don't include those devices
* in our list of devices, as there's no
* point in doing so - they're not available
* for capture.
*
* PCAP_ERROR_IFACE_NOT_UP means that the
* OS's capture mechanism doesn't work on
* interfaces not marked as up; some capture
* mechanisms *do* support that, so we no
* longer reject those interfaces out of hand,
* but we *do* want to reject them if they
* can't be opened for capture.
*/
*curdev_ret = NULL;
return (0);
}
/*
* Yes, we can open it, or we can't, for some other
* reason.
*
* If we can open it, we want to offer it for
* capture, as you can capture on it. If we can't,
* we want to offer it for capture, so that, if
* the user tries to capture on it, they'll get
* an error and they'll know why they can't
* capture on it (e.g., insufficient permissions)
* or they'll report it as a problem (and then
* have the error message to provide as information).
*
* Allocate a new entry.
*/
curdev = malloc(sizeof(pcap_if_t));
if (curdev == NULL) {
(void)snprintf(errbuf, PCAP_ERRBUF_SIZE,
"malloc: %s", pcap_strerror(errno));
return (-1);
}
/*
* Fill in the entry.
*/
curdev->next = NULL;
curdev->name = strdup(name);
if (curdev->name == NULL) {
(void)snprintf(errbuf, PCAP_ERRBUF_SIZE,
"malloc: %s", pcap_strerror(errno));
free(curdev);
return (-1);
}
if (description != NULL) {
/*
* We have a description for this interface.
*/
curdev->description = strdup(description);
if (curdev->description == NULL) {
(void)snprintf(errbuf, PCAP_ERRBUF_SIZE,
"malloc: %s", pcap_strerror(errno));
free(curdev->name);
free(curdev);
return (-1);
}
} else {
/*
* We don't.
*/
curdev->description = NULL;
}
curdev->addresses = NULL; /* list starts out as empty */
curdev->flags = 0;
if (ISLOOPBACK(name, flags))
curdev->flags |= PCAP_IF_LOOPBACK;
if (ISUP(flags))
curdev->flags |= PCAP_IF_UP;
if (ISRUNNING(flags))
curdev->flags |= PCAP_IF_RUNNING;
/*
* Add it to the list, in the appropriate location.
* First, get the "figure of merit" for this
* interface.
*/
this_figure_of_merit = get_figure_of_merit(curdev);
/*
* Now look for the last interface with an figure of merit
* less than or equal to the new interface's figure of
* merit.
*
* We start with "prevdev" being NULL, meaning we're before
* the first element in the list.
*/
prevdev = NULL;
for (;;) {
/*
* Get the interface after this one.
*/
if (prevdev == NULL) {
/*
* The next element is the first element.
*/
nextdev = *alldevs;
} else
nextdev = prevdev->next;
/*
* Are we at the end of the list?
*/
if (nextdev == NULL) {
/*
* Yes - we have to put the new entry
* after "prevdev".
*/
break;
}
/*
* Is the new interface's figure of merit less
* than the next interface's figure of merit,
* meaning that the new interface is better
* than the next interface?
*/
nextdev_figure_of_merit = get_figure_of_merit(nextdev);
if (this_figure_of_merit < nextdev_figure_of_merit) {
/*
* Yes - we should put the new entry
* before "nextdev", i.e. after "prevdev".
*/
break;
}
prevdev = nextdev;
}
/*
* Insert before "nextdev".
*/
curdev->next = nextdev;
/*
* Insert after "prevdev" - unless "prevdev" is null,
* in which case this is the first interface.
*/
if (prevdev == NULL) {
/*
* This is the first interface. Pass back a
* pointer to it, and put "curdev" before
* "nextdev".
*/
*alldevs = curdev;
} else
prevdev->next = curdev;
}
*curdev_ret = curdev;
return (0);
}
/*
* Try to get a description for a given device.
* Returns a mallocated description if it could and NULL if it couldn't.
*
* XXX - on FreeBSDs that support it, should it get the sysctl named
* "dev.{adapter family name}.{adapter unit}.%desc" to get a description
* of the adapter? Note that "dev.an.0.%desc" is "Aironet PC4500/PC4800"
* with my Cisco 350 card, so the name isn't entirely descriptive. The
* "dev.an.0.%pnpinfo" has a better description, although one might argue
* that the problem is really a driver bug - if it can find out that it's
* a Cisco 340 or 350, rather than an old Aironet card, it should use
* that in the description.
*
* Do NetBSD, DragonflyBSD, or OpenBSD support this as well? FreeBSD
* and OpenBSD let you get a description, but it's not generated by the OS,
* it's set with another ioctl that ifconfig supports; we use that to get
* a description in FreeBSD and OpenBSD, but if there is no such
* description available, it still might be nice to get some description
* string based on the device type or something such as that.
*
* In OS X, the System Configuration framework can apparently return
* names in 10.4 and later.
*
* It also appears that freedesktop.org's HAL offers an "info.product"
* string, but the HAL specification says it "should not be used in any
* UI" and "subsystem/capability specific properties" should be used
* instead and, in any case, I think HAL is being deprecated in
* favor of other stuff such as DeviceKit. DeviceKit doesn't appear
* to have any obvious product information for devices, but maybe
* I haven't looked hard enough.
*
* Using the System Configuration framework, or HAL, or DeviceKit, or
* whatever, would require that libpcap applications be linked with
* the frameworks/libraries in question. That shouldn't be a problem
* for programs linking with the shared version of libpcap (unless
* you're running on AIX - which I think is the only UN*X that doesn't
* support linking a shared library with other libraries on which it
* depends, and having an executable linked only with the first shared
* library automatically pick up the other libraries when started -
* and using HAL or whatever). Programs linked with the static
* version of libpcap would have to use pcap-config with the --static
* flag in order to get the right linker flags in order to pick up
* the additional libraries/frameworks; those programs need that anyway
* for libpcap 1.1 and beyond on Linux, as, by default, it requires
* -lnl.
*
* Do any other UN*Xes, or desktop environments support getting a
* description?
*/
static char *
get_if_description(const char *name)
{
#ifdef SIOCGIFDESCR
char *description = NULL;
int s;
struct ifreq ifrdesc;
#ifndef IFDESCRSIZE
size_t descrlen = 64;
#else
size_t descrlen = IFDESCRSIZE;
#endif /* IFDESCRSIZE */
/*
* Get the description for the interface.
*/
memset(&ifrdesc, 0, sizeof ifrdesc);
strlcpy(ifrdesc.ifr_name, name, sizeof ifrdesc.ifr_name);
s = socket(AF_INET, SOCK_DGRAM, 0);
if (s >= 0) {
#ifdef __FreeBSD__
/*
* On FreeBSD, if the buffer isn't big enough for the
* description, the ioctl succeeds, but the description
* isn't copied, ifr_buffer.length is set to the description
* length, and ifr_buffer.buffer is set to NULL.
*/
for (;;) {
free(description);
if ((description = malloc(descrlen)) != NULL) {
ifrdesc.ifr_buffer.buffer = description;
ifrdesc.ifr_buffer.length = descrlen;
if (ioctl(s, SIOCGIFDESCR, &ifrdesc) == 0) {
if (ifrdesc.ifr_buffer.buffer ==
description)
break;
else
descrlen = ifrdesc.ifr_buffer.length;
} else {
/*
* Failed to get interface description.
*/
free(description);
description = NULL;
break;
}
} else
break;
}
#else /* __FreeBSD__ */
/*
* The only other OS that currently supports
* SIOCGIFDESCR is OpenBSD, and it has no way
* to get the description length - it's clamped
* to a maximum of IFDESCRSIZE.
*/
if ((description = malloc(descrlen)) != NULL) {
ifrdesc.ifr_data = (caddr_t)description;
if (ioctl(s, SIOCGIFDESCR, &ifrdesc) != 0) {
/*
* Failed to get interface description.
*/
free(description);
description = NULL;
}
}
#endif /* __FreeBSD__ */
close(s);
if (description != NULL && strlen(description) == 0) {
free(description);
description = NULL;
}
}
return (description);
#else /* SIOCGIFDESCR */
return (NULL);
#endif /* SIOCGIFDESCR */
}
/*
* Try to get a description for a given device, and then look for that
* device in the specified list of devices.
*
* If we find it, then, if the specified address isn't null, add it to
* the list of addresses for the device and return 0.
*
* If we don't find it, check whether we can open it:
*
* If that fails with PCAP_ERROR_NO_SUCH_DEVICE or
* PCAP_ERROR_IFACE_NOT_UP, don't attempt to add an entry for
* it, as that probably means it exists but doesn't support
* packet capture.
*
* Otherwise, attempt to add an entry for it, with the specified
* ifnet flags and description, and, if that succeeds, add the
* specified address to its list of addresses if that address is
* non-null, set *curdev_ret to point to the new entry, and
* return 0, otherwise return PCAP_ERROR and set errbuf to an
* error message.
*
* (We can get called with a null address because we might get a list
* of interface name/address combinations from the underlying OS, with
* the address being absent in some cases, rather than a list of
* interfaces with each interface having a list of addresses, so this
* call may be the only call made to add to the list, and we want to
* add interfaces even if they have no addresses.)
*/
int
add_addr_to_iflist(pcap_if_t **alldevs, const char *name, u_int flags,
struct sockaddr *addr, size_t addr_size,
struct sockaddr *netmask, size_t netmask_size,
struct sockaddr *broadaddr, size_t broadaddr_size,
struct sockaddr *dstaddr, size_t dstaddr_size,
char *errbuf)
{
char *description;
pcap_if_t *curdev;
description = get_if_description(name);
if (add_or_find_if(&curdev, alldevs, name, flags, description,
errbuf) == -1) {
free(description);
/*
* Error - give up.
*/
return (-1);
}
free(description);
if (curdev == NULL) {
/*
* Device wasn't added because it can't be opened.
* Not a fatal error.
*/
return (0);
}
if (addr == NULL) {
/*
* There's no address to add; this entry just meant
* "here's a new interface".
*/
return (0);
}
/*
* "curdev" is an entry for this interface, and we have an
* address for it; add an entry for that address to the
* interface's list of addresses.
*
* Allocate the new entry and fill it in.
*/
return (add_addr_to_dev(curdev, addr, addr_size, netmask,
netmask_size, broadaddr, broadaddr_size, dstaddr,
dstaddr_size, errbuf));
}
/*
* Add an entry to the list of addresses for an interface.
* "curdev" is the entry for that interface.
* If this is the first IP address added to the interface, move it
* in the list as appropriate.
*/
int
add_addr_to_dev(pcap_if_t *curdev,
struct sockaddr *addr, size_t addr_size,
struct sockaddr *netmask, size_t netmask_size,
struct sockaddr *broadaddr, size_t broadaddr_size,
struct sockaddr *dstaddr, size_t dstaddr_size,
char *errbuf)
{
pcap_addr_t *curaddr, *prevaddr, *nextaddr;
curaddr = malloc(sizeof(pcap_addr_t));
if (curaddr == NULL) {
(void)snprintf(errbuf, PCAP_ERRBUF_SIZE,
"malloc: %s", pcap_strerror(errno));
return (-1);
}
curaddr->next = NULL;
if (addr != NULL) {
curaddr->addr = dup_sockaddr(addr, addr_size);
if (curaddr->addr == NULL) {
(void)snprintf(errbuf, PCAP_ERRBUF_SIZE,
"malloc: %s", pcap_strerror(errno));
free(curaddr);
return (-1);
}
} else
curaddr->addr = NULL;
if (netmask != NULL) {
curaddr->netmask = dup_sockaddr(netmask, netmask_size);
if (curaddr->netmask == NULL) {
(void)snprintf(errbuf, PCAP_ERRBUF_SIZE,
"malloc: %s", pcap_strerror(errno));
if (curaddr->addr != NULL)
free(curaddr->addr);
free(curaddr);
return (-1);
}
} else
curaddr->netmask = NULL;
if (broadaddr != NULL) {
curaddr->broadaddr = dup_sockaddr(broadaddr, broadaddr_size);
if (curaddr->broadaddr == NULL) {
(void)snprintf(errbuf, PCAP_ERRBUF_SIZE,
"malloc: %s", pcap_strerror(errno));
if (curaddr->netmask != NULL)
free(curaddr->netmask);
if (curaddr->addr != NULL)
free(curaddr->addr);
free(curaddr);
return (-1);
}
} else
curaddr->broadaddr = NULL;
if (dstaddr != NULL) {
curaddr->dstaddr = dup_sockaddr(dstaddr, dstaddr_size);
if (curaddr->dstaddr == NULL) {
(void)snprintf(errbuf, PCAP_ERRBUF_SIZE,
"malloc: %s", pcap_strerror(errno));
if (curaddr->broadaddr != NULL)
free(curaddr->broadaddr);
if (curaddr->netmask != NULL)
free(curaddr->netmask);
if (curaddr->addr != NULL)
free(curaddr->addr);
free(curaddr);
return (-1);
}
} else
curaddr->dstaddr = NULL;
/*
* Find the end of the list of addresses.
*/
for (prevaddr = curdev->addresses; prevaddr != NULL; prevaddr = nextaddr) {
nextaddr = prevaddr->next;
if (nextaddr == NULL) {
/*
* This is the end of the list.
*/
break;
}
}
if (prevaddr == NULL) {
/*
* The list was empty; this is the first member.
*/
curdev->addresses = curaddr;
} else {
/*
* "prevaddr" is the last member of the list; append
* this member to it.
*/
prevaddr->next = curaddr;
}
return (0);
}
/*
* Look for a given device in the specified list of devices.
*
* If we find it, return 0.
*
* If we don't find it, check whether we can open it:
*
* If that fails with PCAP_ERROR_NO_SUCH_DEVICE or
* PCAP_ERROR_IFACE_NOT_UP, don't attempt to add an entry for
* it, as that probably means it exists but doesn't support
* packet capture.
*
* Otherwise, attempt to add an entry for it, with the specified
* ifnet flags and description, and, if that succeeds, return 0
* and set *curdev_ret to point to the new entry, otherwise
* return PCAP_ERROR and set errbuf to an error message.
*/
int
pcap_add_if(pcap_if_t **devlist, const char *name, u_int flags,
const char *description, char *errbuf)
{
pcap_if_t *curdev;
return (add_or_find_if(&curdev, devlist, name, flags, description,
errbuf));
}
/*
* Free a list of interfaces.
*/
void
pcap_freealldevs(pcap_if_t *alldevs)
{
pcap_if_t *curdev, *nextdev;
pcap_addr_t *curaddr, *nextaddr;
for (curdev = alldevs; curdev != NULL; curdev = nextdev) {
nextdev = curdev->next;
/*
* Free all addresses.
*/
for (curaddr = curdev->addresses; curaddr != NULL; curaddr = nextaddr) {
nextaddr = curaddr->next;
if (curaddr->addr)
free(curaddr->addr);
if (curaddr->netmask)
free(curaddr->netmask);
if (curaddr->broadaddr)
free(curaddr->broadaddr);
if (curaddr->dstaddr)
free(curaddr->dstaddr);
free(curaddr);
}
/*
* Free the name string.
*/
free(curdev->name);
/*
* Free the description string, if any.
*/
if (curdev->description != NULL)
free(curdev->description);
/*
* Free the interface.
*/
free(curdev);
}
}
#if !defined(WIN32) && !defined(MSDOS)
/*
* Return the name of a network interface attached to the system, or NULL
* if none can be found. The interface must be configured up; the
* lowest unit number is preferred; loopback is ignored.
*/
char *
pcap_lookupdev(errbuf)
register char *errbuf;
{
pcap_if_t *alldevs;
/* for old BSD systems, including bsdi3 */
#ifndef IF_NAMESIZE
#define IF_NAMESIZE IFNAMSIZ
#endif
static char device[IF_NAMESIZE + 1];
char *ret;
if (pcap_findalldevs(&alldevs, errbuf) == -1)
return (NULL);
if (alldevs == NULL || (alldevs->flags & PCAP_IF_LOOPBACK)) {
/*
* There are no devices on the list, or the first device
* on the list is a loopback device, which means there
* are no non-loopback devices on the list. This means
* we can't return any device.
*
* XXX - why not return a loopback device? If we can't
* capture on it, it won't be on the list, and if it's
* on the list, there aren't any non-loopback devices,
* so why not just supply it as the default device?
*/
(void)strlcpy(errbuf, "no suitable device found",
PCAP_ERRBUF_SIZE);
ret = NULL;
} else {
/*
* Return the name of the first device on the list.
*/
(void)strlcpy(device, alldevs->name, sizeof(device));
ret = device;
}
pcap_freealldevs(alldevs);
return (ret);
}
int
pcap_lookupnet(device, netp, maskp, errbuf)
register const char *device;
register bpf_u_int32 *netp, *maskp;
register char *errbuf;
{
register int fd;
register struct sockaddr_in *sin4;
struct ifreq ifr;
/*
* The pseudo-device "any" listens on all interfaces and therefore
* has the network address and -mask "0.0.0.0" therefore catching
* all traffic. Using NULL for the interface is the same as "any".
*/
if (!device || strcmp(device, "any") == 0
#ifdef HAVE_DAG_API
|| strstr(device, "dag") != NULL
#endif
#ifdef HAVE_SEPTEL_API
|| strstr(device, "septel") != NULL
#endif
#ifdef PCAP_SUPPORT_BT
|| strstr(device, "bluetooth") != NULL
#endif
#ifdef PCAP_SUPPORT_USB
|| strstr(device, "usbmon") != NULL
#endif
#ifdef HAVE_SNF_API
|| strstr(device, "snf") != NULL
#endif
) {
*netp = *maskp = 0;
return 0;
}
fd = socket(AF_INET, SOCK_DGRAM, 0);
if (fd < 0) {
(void)snprintf(errbuf, PCAP_ERRBUF_SIZE, "socket: %s",
pcap_strerror(errno));
return (-1);
}
memset(&ifr, 0, sizeof(ifr));
#ifdef linux
/* XXX Work around Linux kernel bug */
ifr.ifr_addr.sa_family = AF_INET;
#endif
(void)strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
if (ioctl(fd, SIOCGIFADDR, (char *)&ifr) < 0) {
if (errno == EADDRNOTAVAIL) {
(void)snprintf(errbuf, PCAP_ERRBUF_SIZE,
"%s: no IPv4 address assigned", device);
} else {
(void)snprintf(errbuf, PCAP_ERRBUF_SIZE,
"SIOCGIFADDR: %s: %s",
device, pcap_strerror(errno));
}
(void)close(fd);
return (-1);
}
sin4 = (struct sockaddr_in *)&ifr.ifr_addr;
*netp = sin4->sin_addr.s_addr;
memset(&ifr, 0, sizeof(ifr));
#ifdef linux
/* XXX Work around Linux kernel bug */
ifr.ifr_addr.sa_family = AF_INET;
#endif
(void)strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
if (ioctl(fd, SIOCGIFNETMASK, (char *)&ifr) < 0) {
(void)snprintf(errbuf, PCAP_ERRBUF_SIZE,
"SIOCGIFNETMASK: %s: %s", device, pcap_strerror(errno));
(void)close(fd);
return (-1);
}
(void)close(fd);
*maskp = sin4->sin_addr.s_addr;
if (*maskp == 0) {
if (IN_CLASSA(*netp))
*maskp = IN_CLASSA_NET;
else if (IN_CLASSB(*netp))
*maskp = IN_CLASSB_NET;
else if (IN_CLASSC(*netp))
*maskp = IN_CLASSC_NET;
else {
(void)snprintf(errbuf, PCAP_ERRBUF_SIZE,
"inet class for 0x%x unknown", *netp);
return (-1);
}
}
*netp &= *maskp;
return (0);
}
#elif defined(WIN32)
/*
* Return the name of a network interface attached to the system, or NULL
* if none can be found. The interface must be configured up; the
* lowest unit number is preferred; loopback is ignored.
*/
char *
pcap_lookupdev(errbuf)
register char *errbuf;
{
DWORD dwVersion;
DWORD dwWindowsMajorVersion;
HANDLE pcapMutex;
DWORD wait;
dwVersion = GetVersion(); /* get the OS version */
dwWindowsMajorVersion = (DWORD)(LOBYTE(LOWORD(dwVersion)));
pcapMutex = CreateMutex(NULL, 0, "Global\\DnetPcapHangAvoidanceMutex");
wait = WaitForSingleObject(pcapMutex, INFINITE);
if (dwVersion >= 0x80000000 && dwWindowsMajorVersion >= 4) {
/*
* Windows 95, 98, ME.
*/
ULONG NameLength = 8192;
static char AdaptersName[8192];
if (PacketGetAdapterNames(AdaptersName,&NameLength) )
{
if (wait == WAIT_ABANDONED || wait == WAIT_OBJECT_0) {
ReleaseMutex(pcapMutex);
}
CloseHandle(pcapMutex);
return (AdaptersName);
}
else
{
if (wait == WAIT_ABANDONED || wait == WAIT_OBJECT_0) {
ReleaseMutex(pcapMutex);
}
CloseHandle(pcapMutex);
return NULL;
}
} else {
/*
* Windows NT (NT 4.0, W2K, WXP). Convert the names to UNICODE for backward compatibility
*/
ULONG NameLength = 8192;
static WCHAR AdaptersName[8192];
char *tAstr;
WCHAR *tUstr;
WCHAR *TAdaptersName = (WCHAR*)malloc(8192 * sizeof(WCHAR));
int NAdapts = 0;
if(TAdaptersName == NULL)
{
(void)snprintf(errbuf, PCAP_ERRBUF_SIZE, "memory allocation failure");
return NULL;
}
if ( !PacketGetAdapterNames((PTSTR)TAdaptersName,&NameLength) )
{
if (wait == WAIT_ABANDONED || wait == WAIT_OBJECT_0) {
ReleaseMutex(pcapMutex);
}
CloseHandle(pcapMutex);
(void)snprintf(errbuf, PCAP_ERRBUF_SIZE,
"PacketGetAdapterNames: %s",
pcap_win32strerror());
free(TAdaptersName);
return NULL;
}
if (wait == WAIT_ABANDONED || wait == WAIT_OBJECT_0) {
ReleaseMutex(pcapMutex);
}
CloseHandle(pcapMutex);
tAstr = (char*)TAdaptersName;
tUstr = (WCHAR*)AdaptersName;
/*
* Convert and copy the device names
*/
while(sscanf(tAstr, "%S", tUstr) > 0)
{
tAstr += strlen(tAstr) + 1;
tUstr += wcslen(tUstr) + 1;
NAdapts ++;
}
tAstr++;
*tUstr = 0;
tUstr++;
/*
* Copy the descriptions
*/
while(NAdapts--)
{
char* tmp = (char*)tUstr;
strcpy(tmp, tAstr);
tmp += strlen(tAstr) + 1;
tUstr = (WCHAR*)tmp;
tAstr += strlen(tAstr) + 1;
}
free(TAdaptersName);
return (char *)(AdaptersName);
}
if (wait == WAIT_ABANDONED || wait == WAIT_OBJECT_0) {
ReleaseMutex(pcapMutex);
}
CloseHandle(pcapMutex);
}
int
pcap_lookupnet(device, netp, maskp, errbuf)
register const char *device;
register bpf_u_int32 *netp, *maskp;
register char *errbuf;
{
/*
* We need only the first IPv4 address, so we must scan the array returned by PacketGetNetInfo()
* in order to skip non IPv4 (i.e. IPv6 addresses)
*/
npf_if_addr if_addrs[MAX_NETWORK_ADDRESSES];
LONG if_addr_size = 1;
struct sockaddr_in *t_addr;
unsigned int i;
HANDLE pcapMutex;
DWORD wait;
pcapMutex = CreateMutex(NULL, 0, "Global\\DnetPcapHangAvoidanceMutex");
wait = WaitForSingleObject(pcapMutex, INFINITE);
if (!PacketGetNetInfoEx((void *)device, if_addrs, &if_addr_size)) {
if (wait == WAIT_ABANDONED || wait == WAIT_OBJECT_0) {
ReleaseMutex(pcapMutex);
}
CloseHandle(pcapMutex);
*netp = *maskp = 0;
return (0);
}
if (wait == WAIT_ABANDONED || wait == WAIT_OBJECT_0) {
ReleaseMutex(pcapMutex);
}
CloseHandle(pcapMutex);
for(i=0; i<MAX_NETWORK_ADDRESSES; i++)
{
if(if_addrs[i].IPAddress.ss_family == AF_INET)
{
t_addr = (struct sockaddr_in *) &(if_addrs[i].IPAddress);
*netp = t_addr->sin_addr.S_un.S_addr;
t_addr = (struct sockaddr_in *) &(if_addrs[i].SubnetMask);
*maskp = t_addr->sin_addr.S_un.S_addr;
*netp &= *maskp;
return (0);
}
}
*netp = *maskp = 0;
return (0);
}
#endif /* !WIN32 && !MSDOS */