1
0
mirror of https://github.com/nmap/nmap.git synced 2025-12-06 04:31:29 +00:00
Files
nmap/nmap_dns.cc

2051 lines
60 KiB
C++

/***************************************************************************
* nmap_dns.cc -- Handles parallel DNS resolution for target IPs *
* *
***********************IMPORTANT NMAP LICENSE TERMS************************
*
* The Nmap Security Scanner is (C) 1996-2025 Nmap Software LLC ("The Nmap
* Project"). Nmap is also a registered trademark of the Nmap Project.
*
* This program is distributed under the terms of the Nmap Public Source
* License (NPSL). The exact license text applying to a particular Nmap
* release or source code control revision is contained in the LICENSE
* file distributed with that version of Nmap or source code control
* revision. More Nmap copyright/legal information is available from
* https://nmap.org/book/man-legal.html, and further information on the
* NPSL license itself can be found at https://nmap.org/npsl/ . This
* header summarizes some key points from the Nmap license, but is no
* substitute for the actual license text.
*
* Nmap is generally free for end users to download and use themselves,
* including commercial use. It is available from https://nmap.org.
*
* The Nmap license generally prohibits companies from using and
* redistributing Nmap in commercial products, but we sell a special Nmap
* OEM Edition with a more permissive license and special features for
* this purpose. See https://nmap.org/oem/
*
* If you have received a written Nmap license agreement or contract
* stating terms other than these (such as an Nmap OEM license), you may
* choose to use and redistribute Nmap under those terms instead.
*
* The official Nmap Windows builds include the Npcap software
* (https://npcap.com) for packet capture and transmission. It is under
* separate license terms which forbid redistribution without special
* permission. So the official Nmap Windows builds may not be redistributed
* without special permission (such as an Nmap OEM license).
*
* Source is provided to this software because we believe users have a
* right to know exactly what a program is going to do before they run it.
* This also allows you to audit the software for security holes.
*
* Source code also allows you to port Nmap to new platforms, fix bugs, and
* add new features. You are highly encouraged to submit your changes as a
* Github PR or by email to the dev@nmap.org mailing list for possible
* incorporation into the main distribution. Unless you specify otherwise, it
* is understood that you are offering us very broad rights to use your
* submissions as described in the Nmap Public Source License Contributor
* Agreement. This is important because we fund the project by selling licenses
* with various terms, and also because the inability to relicense code has
* caused devastating problems for other Free Software projects (such as KDE
* and NASM).
*
* The free version of Nmap is distributed in the hope that it will be
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Warranties,
* indemnification and commercial support are all available through the
* Npcap OEM program--see https://nmap.org/oem/
*
***************************************************************************/
// mass_dns - Parallel Asynchronous DNS Resolution
//
// One of Nmap's features is to perform reverse DNS queries
// on large number of IP addresses. Nmap supports 2 different
// methods of accomplishing this:
//
// System Resolver (specified using --system-dns):
// Performs sequential getnameinfo() calls on all the IPs.
// As reliable as your system resolver, almost guaranteed
// to be portable, but intolerably slow for scans of hundreds
// or more because the result from each query needs to be
// received before the next one can be sent.
//
// Mass/Async DNS (default):
// Attempts to resolve host names in parallel using a set
// of DNS servers. DNS servers are found here:
//
// --dns-servers <serv1[,serv2],...> (all platforms - overrides everything else)
//
// /etc/resolv.conf (only on unix)
//
// These registry keys: (only on windows)
//
// HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\NameServer
// HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\DhcpNameServer
// HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\*\NameServer
// HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\*\DhcpNameServer
//
//
// Also, most systems maintain a file "/etc/hosts" that contains
// IP to hostname mappings. We also try to consult these files. Here
// is where we look for the files:
//
// Unix: /etc/hosts
//
// Windows:
// for 95/98/Me: WINDOWS_DIR\hosts
// for NT/2000/XP Pro: WINDOWS_DIR\system32\drivers\etc\hosts
// for XP Home: WINDOWS_DIR\system32\drivers\etc\hosts
// --see http://accs-net.com/hosts/how_to_use_hosts.html
//
//
// Created by Doug Hoyte <doug at hcsw.org> http://www.hcsw.org
// DNS Caching and aging added by Eddie Bell ejlbell@gmail.com 2007
// IPv6 and improved DNS cache by Gioacchino Mazzurco <gmazzurco89@gmail.com> 2015
// TODO:
//
// * Tune performance parameters
//
// * Figure out best way to estimate completion time
// and display it in a ScanProgressMeter
#include <limits.h>
#include <list>
#include <fstream>
#include <istream>
#ifdef WIN32
#include "nmap_winconfig.h"
#include <winsock2.h>
#include <iphlpapi.h>
#endif
#include "nmap.h"
#include "NmapOps.h"
#include "nmap_dns.h"
#include "nsock.h"
#include "nmap_error.h"
#include "nmap_tty.h"
#include "tcpip.h"
#include "timing.h"
#include "Target.h"
extern NmapOps o;
//------------------- Performance Parameters ---------------------
// Algorithm:
//
// A batch of num_requests requests is passed to nmap_mass_dns():
// void nmap_mass_dns(DNS::Request requests[], int num_requests);
//
// mass_dns sends out CAPACITY_MIN of these requests to the DNS
// servers detected, alternating in sequence.
// When a request is fulfilled (either a resolved domain, NXDomain,
// or confirmed ServFail) CAPACITY_UP_STEP is added to the current
// capacity of the server the request was found by.
// When a request times out and retries on the same server,
// the server's capacity is scaled by CAPACITY_MINOR_DOWN_STEP.
// When a request times out and moves to the next server in
// sequence, the server's capacity is scaled by CAPACITY_MAJOR_DOWN_STEP.
// mass_dns tries to maintain the current number of "outstanding
// queries" on each server to that of its current capacity. The
// packet is dropped if it cycles through all specified DNS
// servers.
// Since multiple DNS servers can be specified, different sequences
// of timers are maintained. These are the various retransmission
// intervals for each server before we move on to the next DNS server:
// In milliseconds
// Each row MUST be terminated with -1
#define MAX_DNS_TRIES 3
#define MIN_DNS_TIMEOUT (MIN_RTT_TIMEOUT * 5)
static int read_timeouts[][MAX_DNS_TRIES + 1] = {
{ 2 * MIN_DNS_TIMEOUT, 3 * MIN_DNS_TIMEOUT, 4 * MIN_DNS_TIMEOUT, -1 }, // 1 server
{ 2 * MIN_DNS_TIMEOUT, 2 * MIN_DNS_TIMEOUT, -1, -1 }, // 2 servers
{ MIN_DNS_TIMEOUT, 2 * MIN_DNS_TIMEOUT, -1, -1 }, // 3+ servers
};
#define CAPACITY_MIN 10
#define CAPACITY_MAX 100
#define CAPACITY_UP_STEP 2
#define CAPACITY_MINOR_DOWN_SCALE 0.7
#define CAPACITY_MAJOR_DOWN_SCALE 0.4
// Each request will try to resolve on at most this many servers:
#define SERVERS_TO_TRY 3
//------------------- Other Parameters ---------------------
// How often to display a short debugging summary if debugging is
// specified. Lower numbers means it's displayed more often.
#define SUMMARY_DELAY 50
// Minimum debugging level to display packet trace
#define TRACE_DEBUG_LEVEL 4
// The amount of time we wait for nsock_write() to complete before
// retransmission. This should almost never happen. (in milliseconds)
#define WRITE_TIMEOUT 100
//------------------- Internal Structures ---------------------
struct dns_server;
struct request;
typedef struct sockaddr_storage sockaddr_storage;
struct dns_server {
enum status_t {
DISCONNECTED,
CONNECTING,
CONNECTED
};
std::string hostname;
sockaddr_storage addr;
size_t addr_len;
nsock_iod nsd;
status_t status;
int reqs_on_wire;
int capacity;
int ssthresh;
int write_busy;
std::list<request *> to_process;
std::list<request *> in_process;
struct timeval last_increase;
dns_server() : hostname(), addr_len(0), status(DISCONNECTED), reqs_on_wire(0),
capacity(CAPACITY_MIN), ssthresh((CAPACITY_MAX + CAPACITY_MIN)/2), write_busy(0), to_process(), in_process()
{
memset(&addr, 0, sizeof(addr));
memset(&last_increase, 0, sizeof(last_increase));
}
};
struct request {
DNS::Request *targ;
struct timeval sent;
int tries;
int servers_tried;
dns_server *first_server;
dns_server *curr_server;
u16 id;
bool alt_req;
~request() {
if (alt_req && targ) {
delete targ;
targ = NULL;
}
}
};
/*keeps record of a request going through a particular DNS server
helps in attaining faster lookup based on ID */
struct info{
dns_server *server;
request *tpreq;
};
class HostElem
{
public:
HostElem(const std::string & name_, const sockaddr_storage & ip) :
name(name_), addr(ip), cache_hits(0) {}
~HostElem() {}
/* Ages entries and return true with a cache hit of 0 (the least used) */
static bool isTimeToClean(HostElem he)
{
if(he.cache_hits)
{
he.cache_hits >>= 1;
return false;
}
return true;
}
const std::string name;
const sockaddr_storage addr;
u8 cache_hits;
};
class HostCacheLine : public std::list<HostElem>{};
class HostCache
{
public:
// TODO: avoid hardcode this constant
HostCache() : lines_count(256), hash_mask(lines_count-1),
hosts_storage(new HostCacheLine[lines_count]), elements_count(0)
{}
~HostCache()
{
delete[] hosts_storage;
}
u32 hash(const sockaddr_storage &ip) const
{
u32 ret = 0;
switch (ip.ss_family)
{
case AF_INET:
{
u8 * ipv4 = (u8 *) &((const struct sockaddr_in *) &ip)->sin_addr;
// Shuffle bytes a little so we avoid awful performances in commons
// usages patterns like 10.0.1-255.1 and lines_count 256
ret = ipv4[0] + (ipv4[1]<<3) + (ipv4[2]<<5) + (ipv4[3]<<7);
break;
}
case AF_INET6:
{
const struct sockaddr_in6 * sa6 = (const struct sockaddr_in6 *) &ip;
u32 * ipv6 = (u32 *) sa6->sin6_addr.s6_addr;
ret = ipv6[0] + ipv6[1] + ipv6[2] + ipv6[3];
break;
}
}
return ret & hash_mask;
}
/* Add to the dns cache. If there are too many entries
* we age and remove the least frequently used ones to
* make more space. */
bool add( const sockaddr_storage & ip, const std::string & hname)
{
std::string discard;
if(lookup(ip, discard)) return false;
if(elements_count >= lines_count) prune();
HostElem he(hname, ip);
hosts_storage[hash(ip)].push_back(he);
++elements_count;
return true;
}
u32 prune()
{
u32 original_count = elements_count;
for(u32 i = 0; i < lines_count; ++i)
{
std::list<HostElem>::iterator it = find_if(hosts_storage[i].begin(),
hosts_storage[i].end(),
HostElem::isTimeToClean);
while ( it != hosts_storage[i].end() )
{
it = hosts_storage[i].erase(it);
assert(elements_count > 0);
--elements_count;
}
}
return original_count - elements_count;
}
/* Search for a hostname in the cache and increment
* its cache hit counter if found */
bool lookup(const sockaddr_storage & ip, std::string & name)
{
std::list<HostElem>::iterator hostI;
u32 ip_hash = hash(ip);
for( hostI = hosts_storage[ip_hash].begin();
hostI != hosts_storage[ip_hash].end();
++hostI)
{
if (sockaddr_storage_equal(&hostI->addr, &ip))
{
if(hostI->cache_hits < UCHAR_MAX)
hostI->cache_hits++;
name = hostI->name;
return true;
}
}
return false;
}
protected:
const u32 lines_count;
const u32 hash_mask;
HostCacheLine * const hosts_storage;
u32 elements_count;
};
//------------------- Globals ---------------------
u16 DNS::Factory::progressiveId = get_random_u16();
static std::list<dns_server> servs;
static std::list<request *> new_reqs;
static std::list<request *> deferred_reqs;
static std::map<u16, info> records;
static int total_reqs;
static nsock_pool dnspool=NULL;
/* The DNS cache, not just for entries from /etc/hosts. */
static HostCache host_cache;
/* Forward lookup table from /etc/hosts */
typedef std::pair<std::string, DNS::RECORD_TYPE> NameRecord;
static std::map<NameRecord, sockaddr_storage> etchosts;
static int stat_actual, stat_ok, stat_nx, stat_sf, stat_trans, stat_dropped, stat_cname;
static struct timeval starttv;
static int read_timeout_index;
static int firstrun=1;
static ScanProgressMeter *SPM;
//------------------- Prototypes and macros ---------------------
static void read_evt_handler(nsock_pool, nsock_event, void *);
static void put_dns_packet_on_wire(request *req);
#define ACTION_FINISHED 0
#define ACTION_SYSTEM_RESOLVE 1
#define ACTION_TIMEOUT 2
//------------------- Misc code ---------------------
static void output_summary() {
int tp = stat_ok + stat_nx + stat_dropped;
struct timeval now;
memcpy(&now, nsock_gettimeofday(), sizeof(struct timeval));
if (o.debugging && (tp%SUMMARY_DELAY == 0))
log_write(LOG_STDOUT, "mass_dns: %.2fs %d/%d [#: %lu, OK: %d, NX: %d, DR: %d, SF: %d, TR: %d]\n",
TIMEVAL_FSEC_SUBTRACT(now, starttv),
tp, stat_actual,
(unsigned long) servs.size(), stat_ok, stat_nx, stat_dropped, stat_sf, stat_trans);
}
static void check_capacities(dns_server *tpserv) {
if (tpserv->capacity < CAPACITY_MIN) tpserv->capacity = CAPACITY_MIN;
if (tpserv->capacity > CAPACITY_MAX) tpserv->capacity = CAPACITY_MAX;
if (o.debugging >= TRACE_DEBUG_LEVEL) log_write(LOG_STDOUT, "CAPACITY <%s> = %d\n", tpserv->hostname.c_str(), tpserv->capacity);
}
// Closes all nsis created in connect_dns_servers()
static void close_dns_servers() {
std::list<dns_server>::iterator serverI;
for(serverI = servs.begin(); serverI != servs.end(); serverI++) {
if (serverI->status != dns_server::DISCONNECTED) {
nsock_iod_delete(serverI->nsd, NSOCK_PENDING_SILENT);
serverI->status = dns_server::DISCONNECTED;
serverI->to_process.clear();
serverI->in_process.clear();
}
}
nsock_loop_quit(dnspool);
}
// Puts as many packets on the line as capacity will allow
static void do_possible_writes() {
std::list<dns_server>::iterator servI;
request *tpreq;
bool all_servs_disconnected = true;
for(servI = servs.begin(); servI != servs.end(); servI++) {
switch (servI->status) {
case dns_server::CONNECTED:
all_servs_disconnected = false;
break;
case dns_server::CONNECTING:
all_servs_disconnected = false;
case dns_server::DISCONNECTED:
continue;
break;
}
if (servI->write_busy == 0 && servI->reqs_on_wire < servI->capacity) {
tpreq = NULL;
if (!new_reqs.empty()) {
tpreq = new_reqs.front();
assert(tpreq != NULL);
tpreq->first_server = tpreq->curr_server = &*servI;
new_reqs.pop_front();
} else if (!servI->to_process.empty()) {
tpreq = servI->to_process.front();
servI->to_process.pop_front();
}
if (tpreq) {
if (o.debugging >= TRACE_DEBUG_LEVEL)
log_write(LOG_STDOUT, "mass_dns: TRANSMITTING for <%s> (server <%s>)\n", tpreq->targ->repr(), servI->hostname.c_str());
stat_trans++;
put_dns_packet_on_wire(tpreq);
}
}
}
if (all_servs_disconnected) {
nsock_loop_quit(dnspool);
}
}
// nsock write handler
static void write_evt_handler(nsock_pool nsp, nsock_event evt, void *req_v) {
assert(nse_type(evt) == NSE_TYPE_WRITE);
info record;
request *req = (request *) req_v;
if (nse_status(evt) == NSE_STATUS_SUCCESS) {
req->curr_server->in_process.push_front(req);
record.tpreq = req;
record.server = req->curr_server;
records[req->id] = record;
do_possible_writes();
}
else {
if (o.debugging) {
log_write(LOG_STDOUT, "mass_dns: WRITE error: %s", nse_status2str(nse_status(evt)));
}
req->curr_server->to_process.push_front(req);
}
// Avoid runaway recursion: when we call do_possible_writes above,
// make sure we still are "busy"
req->curr_server->write_busy = 0;
}
static DNS::RECORD_TYPE wire_type(DNS::RECORD_TYPE t) {
if (t == DNS::ANY) {
return DNS::A;
}
return t;
}
// Takes a DNS request structure and actually puts it on the wire
// (calls nsock_write()). Does various other tasks like recording
// the time for the timeout.
static void put_dns_packet_on_wire(request *req) {
static const size_t maxlen = 512;
u8 packet[maxlen];
size_t plen=0;
req->curr_server->write_busy = 1;
req->curr_server->reqs_on_wire++;
DNS::Request &reqt = *req->targ;
switch(reqt.type) {
case DNS::ANY:
case DNS::A:
case DNS::AAAA:
plen = DNS::Factory::buildSimpleRequest(req->id, reqt.name, wire_type(reqt.type), packet, maxlen);
break;
case DNS::PTR:
assert(reqt.ssv.size() > 0);
plen = DNS::Factory::buildReverseRequest(req->id, reqt.ssv.front(), packet, maxlen);
break;
default:
// Unhandled type. Should have been dealt with earlier.
assert(false);
break;
}
memcpy(&req->sent, nsock_gettimeofday(), sizeof(struct timeval));
nsock_write(dnspool, req->curr_server->nsd, write_evt_handler, WRITE_TIMEOUT, req, reinterpret_cast<const char *>(packet), plen);
}
// Processes DNS packets that have timed out
// Returns time until next read timeout
static int deal_with_timedout_reads(bool adjust_timing) {
std::list<dns_server>::iterator servI;
std::list<dns_server>::iterator servItemp;
std::list<request *>::iterator reqI;
std::list<request *>::iterator nextI;
std::map<u16, info>::iterator infoI;
request *tpreq;
struct timeval now;
int tp, min_timeout = INT_MAX;
memcpy(&now, nsock_gettimeofday(), sizeof(struct timeval));
if (keyWasPressed())
SPM->printStats((double) (stat_ok + stat_nx + stat_dropped) / stat_actual, &now);
for(servI = servs.begin(); servI != servs.end(); servI++) {
nextI = servI->in_process.begin();
if (nextI == servI->in_process.end()) continue;
struct timeval earliest_sent = now;
bool adjusted = !adjust_timing;
bool may_increase = adjust_timing;
do {
reqI = nextI++;
tpreq = *reqI;
int to = read_timeouts[read_timeout_index][tpreq->tries];
int elapsed = TIMEVAL_MSEC_SUBTRACT(now, tpreq->sent);
tp = to - elapsed;
if (tp > 0) {
// only bother checking this if we might increase the capacity
if (may_increase && TIMEVAL_BEFORE(tpreq->sent, earliest_sent)) {
earliest_sent = tpreq->sent;
}
if (tp < min_timeout) min_timeout = tp;
}
else {
may_increase = false;
tpreq->tries++;
if (tpreq->tries > MAX_DNS_TRIES)
tpreq->tries = MAX_DNS_TRIES;
servI->in_process.erase(reqI);
records.erase(tpreq->id);
servI->reqs_on_wire--;
// If we've tried this server enough times, move to the next one
if (read_timeouts[read_timeout_index][tpreq->tries] == -1) {
if (!adjusted && tpreq->servers_tried == 0) {
servI->ssthresh = MIN(servI->ssthresh, servI->capacity);
servI->capacity = (int) (servI->capacity * CAPACITY_MAJOR_DOWN_SCALE);
check_capacities(&*servI);
adjusted = true;
}
servItemp = servI;
servItemp++;
if (servItemp == servs.end()) servItemp = servs.begin();
tpreq->curr_server = &*servItemp;
tpreq->tries = 0;
tpreq->servers_tried++;
if (tpreq->curr_server == tpreq->first_server || tpreq->servers_tried == SERVERS_TO_TRY) {
// Either give up on the IP
// or, for maximum reliability, put the server back into processing
// Note it's possible that this will never terminate.
// FIXME: Find a good compromise
// **** We've already tried all servers... give up
if (o.debugging >= TRACE_DEBUG_LEVEL) log_write(LOG_STDOUT, "mass_dns: *DR*OPPING <%s>\n", tpreq->targ->repr());
output_summary();
stat_dropped++;
total_reqs--;
records.erase(tpreq->id);
delete tpreq;
tpreq = NULL;
// **** OR We start at the back of this server's queue
//servItemp->to_process.push_back(tpreq);
} else {
servItemp->to_process.push_back(tpreq);
}
} else {
if (!adjusted && tpreq->servers_tried == 0 && tpreq->tries <= 1) {
servI->ssthresh = MIN(servI->ssthresh, servI->capacity);
servI->capacity = (int) (servI->capacity * CAPACITY_MINOR_DOWN_SCALE);
check_capacities(&*servI);
adjusted = true;
}
servI->to_process.push_back(tpreq);
}
}
} while (nextI != servI->in_process.end());
if (may_increase && TIMEVAL_MSEC_SUBTRACT(earliest_sent, servI->last_increase) > (MIN_DNS_TIMEOUT) && servI->reqs_on_wire > servI->capacity - 2*CAPACITY_UP_STEP) {
servI->capacity += CAPACITY_UP_STEP;
check_capacities(&*servI);
servI->last_increase = now;
}
}
if (min_timeout > 500) return 500;
else return min_timeout;
}
static bool is_primary_req(const request *req) {
if (req->alt_req) {
return (o.af() == AF_INET6);
}
else if (req->targ->type == DNS::ANY) {
return (o.af() == AF_INET);
}
return true;
}
static void process_request(int action, info &reqinfo) {
request *tpreq = reqinfo.tpreq;
dns_server *server = reqinfo.server;
switch (action) {
case ACTION_SYSTEM_RESOLVE:
case ACTION_FINISHED:
if (server->reqs_on_wire == server->capacity && server->capacity < server->ssthresh) {
server->capacity += CAPACITY_UP_STEP;
check_capacities(server);
}
records.erase(tpreq->id);
server->in_process.remove(tpreq);
server->reqs_on_wire--;
total_reqs--;
if (action == ACTION_SYSTEM_RESOLVE && is_primary_req(tpreq)) {
deferred_reqs.push_back(tpreq);
}
else {
delete tpreq;
tpreq = NULL;
}
break;
case ACTION_TIMEOUT:
tpreq->tries = MAX_DNS_TRIES;
deal_with_timedout_reads(false);
break;
default:
assert(false);
break;
}
}
// After processing a DNS response, we search through the IPs we're
// looking for and update their results as necessary.
static bool process_result(const std::string &name, const DNS::Record *rr, info &reqinfo, bool already_matched)
{
DNS::Request *reqt = reqinfo.tpreq->targ;
std::vector<struct sockaddr_storage> *ssv;
if (reqinfo.tpreq->alt_req) {
DNS::Request *alt_req = (DNS::Request *) reqinfo.tpreq->targ->userdata;
ssv = &alt_req->ssv;
}
else {
ssv = &reqt->ssv;
}
const struct sockaddr_storage *ss = NULL;
const DNS::A_Record *a_rec = NULL;
sockaddr_storage ip;
ip.ss_family = AF_UNSPEC;
switch (reqt->type) {
case DNS::A:
case DNS::AAAA:
case DNS::ANY:
if (!already_matched && name != reqt->name) {
return false;
}
a_rec = static_cast<const DNS::A_Record *>(rr);
ssv->push_back(a_rec->value);
if (o.debugging >= TRACE_DEBUG_LEVEL)
{
log_write(LOG_STDOUT, "mass_dns: OK MATCHED <%s> to <%s>\n",
reqt->name.c_str(),
inet_ntop_ez(&a_rec->value, sizeof(struct sockaddr_storage)));
}
break;
case DNS::PTR:
ss = &reqt->ssv.front();
if (!already_matched) {
if (!DNS::Factory::ptrToIp(name, ip) ||
!sockaddr_storage_equal(&ip, ss)) {
return false;
}
}
reqt->name = static_cast<const DNS::PTR_Record *>(rr)->value;
host_cache.add(*ss, reqt->name);
if (o.debugging >= TRACE_DEBUG_LEVEL)
{
log_write(LOG_STDOUT, "mass_dns: OK MATCHED <%s> to <%s>\n",
inet_ntop_ez(ss, sizeof(struct sockaddr_storage)),
reqt->name.c_str());
}
break;
default:
assert(false);
break;
}
return true;
}
// Nsock read handler. One nsock read for each DNS server exists at each
// time. This function uses various helper functions as defined above.
static void read_evt_handler(nsock_pool nsp, nsock_event evt, void *ctx) {
dns_server *srv = (dns_server *)ctx;
const u8 *buf;
int buflen;
assert(nse_type(evt) == NSE_TYPE_READ);
// Only initiate another read if this one succeeded or timed out.
if(nse_status(evt) == NSE_STATUS_SUCCESS ||
nse_status(evt) == NSE_STATUS_TIMEOUT ) {
if (total_reqs >= 1)
nsock_read(nsp, nse_iod(evt), read_evt_handler, -1, (void *)srv);
}
if (nse_status(evt) != NSE_STATUS_SUCCESS) {
if (o.debugging)
log_write(LOG_STDOUT, "mass_dns: warning: got a %s:%s in %s()\n",
nse_type2str(nse_type(evt)),
nse_status2str(nse_status(evt)), __func__);
// We're not trying another read here, so disconnect the server.
srv->status = dns_server::DISCONNECTED;
nsock_iod_delete(srv->nsd, NSOCK_PENDING_SILENT);
// Put all in-process and to-process requests back in the queue.
new_reqs.splice(new_reqs.end(), srv->in_process);
new_reqs.splice(new_reqs.end(), srv->to_process);
return;
}
buf = (unsigned char *) nse_readbuf(evt, &buflen);
DNS::Packet p;
size_t readed_bytes = p.parseFromBuffer(buf, buflen);
if(readed_bytes < DNS::DATA) return;
// We should have 1+ queries:
u16 &f = p.flags;
if(p.queries.empty() || !DNS_HAS_FLAG(f, DNS::RESPONSE) ||
!DNS_HAS_FLAG(f, DNS::OP_STANDARD_QUERY) ||
(f & DNS::ZERO) || DNS_HAS_ERR(f, DNS::ERR_FORMAT) ||
DNS_HAS_ERR(f, DNS::ERR_NOT_IMPLEMENTED) || DNS_HAS_ERR(f, DNS::ERR_REFUSED))
return;
// Check for matching request
std::map<u16, info>::iterator infoI = records.find(p.id);
if (infoI == records.end()) {
return;
}
info &reqinfo = infoI->second;
DNS::Request *reqt = reqinfo.tpreq->targ;
bool processing_successful = false;
if (DNS_HAS_ERR(f, DNS::ERR_NAME) || p.answers.empty())
{
// Check if this was a nonstandard name;
if (reqt->type != DNS::PTR) {
for (std::string::const_iterator it=reqt->name.begin(); it < reqt->name.end(); it++) {
if (*it < '0') { // signed char comparison; non-ascii are < 0
// system resolver might be able to do better with things like AI_IDN
process_request(ACTION_SYSTEM_RESOLVE, reqinfo);
processing_successful = true;
break;
}
}
if (!processing_successful && reqt->name.find('.') == std::string::npos) {
// Names without a dot: system resolver may do better.
process_request(ACTION_SYSTEM_RESOLVE, reqinfo);
processing_successful = true;
}
}
if (!processing_successful) {
process_request(ACTION_FINISHED, reqinfo);
if (o.debugging >= TRACE_DEBUG_LEVEL)
log_write(LOG_STDOUT, "mass_dns: NXDOMAIN <id = %d>\n", p.id);
stat_nx++;
}
output_summary();
return;
}
if (DNS_HAS_ERR(f, DNS::ERR_SERVFAIL))
{
process_request(ACTION_TIMEOUT, reqinfo);
if (o.debugging >= TRACE_DEBUG_LEVEL)
log_write(LOG_STDOUT, "mass_dns: SERVFAIL <id = %d>\n", p.id);
stat_sf++;
return;
}
sockaddr_storage ip;
ip.ss_family = AF_UNSPEC;
std::string alias;
for(std::list<DNS::Answer>::const_iterator it = p.answers.begin();
it != p.answers.end(); ++it )
{
const DNS::Answer &a = *it;
if(a.record_class == DNS::CLASS_IN)
{
if (wire_type(reqt->type) == a.record_type) {
processing_successful = process_result(a.name, a.record, reqinfo, a.name == alias);
if (!processing_successful && o.debugging) {
log_write(LOG_STDOUT, "mass_dns: Mismatched record for request %s\n", reqt->repr());
}
}
else if (a.record_type == DNS::CNAME) {
const DNS::CNAME_Record *cname = static_cast<const DNS::CNAME_Record *>(a.record);
if((reqt->type == DNS::PTR && DNS::Factory::ptrToIp(a.name, ip))
|| a.name == reqt->name || (!alias.empty() && a.name == alias))
{
alias = cname->value;
if (o.debugging >= TRACE_DEBUG_LEVEL)
{
log_write(LOG_STDOUT, "mass_dns: CNAME found for <%s> to <%s>\n", a.name.c_str(), alias.c_str());
}
}
}
}
}
if (!processing_successful) {
if (DNS_HAS_FLAG(f, DNS::TRUNCATED)) {
// TODO: TCP fallback, or only use system resolver if user didn't specify --dns-servers
process_request(ACTION_SYSTEM_RESOLVE, reqinfo);
}
else if (!alias.empty()) {
if (o.debugging >= TRACE_DEBUG_LEVEL)
{
log_write(LOG_STDOUT, "mass_dns: CNAME for <%s> not processed.\n", reqt->repr());
}
// TODO: Send a PTR request for alias instead. Meanwhile, we'll just fall
// back to using system resolver. Alternative: report the canonical name
// (alias), but that's not very useful.
process_request(ACTION_SYSTEM_RESOLVE, reqinfo);
}
else {
if (o.debugging >= TRACE_DEBUG_LEVEL) {
log_write(LOG_STDOUT, "mass_dns: Unable to process the response for %s\n", reqt->repr());
}
}
}
else {
output_summary();
stat_ok++;
process_request(ACTION_FINISHED, reqinfo);
}
do_possible_writes();
// Close DNS servers if we're all done so that we kill
// all events and return from nsock_loop immediateley
if (total_reqs == 0)
close_dns_servers();
}
// nsock connect handler - Empty because it doesn't really need to do anything...
static void connect_evt_handler(nsock_pool nsp, nsock_event evt, void *srv_v) {
dns_server *srv = (dns_server *)srv_v;
assert(nse_type(evt) == NSE_TYPE_CONNECT);
if (nse_status(evt) != NSE_STATUS_SUCCESS) {
if (o.debugging) {
log_write(LOG_STDOUT, "mass_dns: connection to %s failed: %s\n",
srv->hostname.c_str(),
nse_status2str(nse_status(evt)));
}
srv->status = dns_server::DISCONNECTED;
return;
}
nsock_read(nsp, srv->nsd, read_evt_handler, -1, (void *)srv);
srv->status = dns_server::CONNECTED;
}
static void add_dns_server(const struct sockaddr_storage *addr, size_t addr_len, const char *hostname) {
const sockaddr_storage *ss = o.SourceSockAddr();
if (o.spoofsource && ss && ss->ss_family != addr->ss_family) {
// Can't connect to this address family using the specified source (-S)
return;
}
std::list<dns_server>::iterator servI;
for(servI = servs.begin(); servI != servs.end(); servI++) {
// Already added!
if (memcmp(addr, &servI->addr, addr_len) == 0) break;
}
// If it hasn't already been added, add it!
if (servI == servs.end()) {
dns_server tpserv;
tpserv.hostname = hostname;
memcpy(&tpserv.addr, addr, addr_len);
tpserv.addr_len = addr_len;
servs.push_front(tpserv);
if (o.debugging) log_write(LOG_STDOUT, "mass_dns: Using DNS server %s\n", hostname);
}
}
// Adds DNS servers to the dns_server list. They can be separated by
// commas or spaces - NOTE this doesn't actually do any connecting!
static void add_dns_server(char *ipaddrs) {
const char *hostname;
struct sockaddr_storage addr;
size_t addr_len = sizeof(addr);
for (hostname = strtok(ipaddrs, " ,"); hostname != NULL; hostname = strtok(NULL, " ,")) {
if (resolve(hostname, 0, (struct sockaddr_storage *) &addr, &addr_len,
o.spoofsource ? o.af() : PF_UNSPEC) != 0)
continue;
add_dns_server(&addr, addr_len, hostname);
}
}
// Creates a new nsi for each DNS server
static void connect_dns_servers() {
std::list<dns_server>::iterator serverI;
struct sockaddr_storage ss, ss2;
size_t sslen = 0, ss2len = 0;
if (o.SourceSockAddr()) {
o.SourceSockAddr(&ss, &sslen);
// Source addr can be set by -e, so unless user specifically asked to
// spoof, also grab the source for the other address family.
if (!o.spoofsource && *o.device) {
int af = ss.ss_family == AF_INET ? AF_INET6 : AF_INET;
if (-1 != devname2ipaddr(o.device, af, &ss2)) {
ss2len = sizeof(ss2);
}
}
}
for(serverI = servs.begin(); serverI != servs.end(); serverI++) {
serverI->nsd = nsock_iod_new(dnspool, NULL);
if (sslen > 0 && ss.ss_family == serverI->addr.ss_family) {
nsock_iod_set_localaddr(serverI->nsd, &ss, sslen);
}
else if (ss2len > 0 && ss2.ss_family == serverI->addr.ss_family) {
nsock_iod_set_localaddr(serverI->nsd, &ss2, ss2len);
}
if (o.ipoptionslen)
nsock_iod_set_ipoptions(serverI->nsd, o.ipoptions, o.ipoptionslen);
serverI->status = dns_server::CONNECTING;
nsock_connect_udp(dnspool, serverI->nsd, connect_evt_handler, &*serverI, (struct sockaddr *) &serverI->addr, serverI->addr_len, 53);
}
}
#ifdef WIN32
void win32_get_servers() {
ULONG ret = ERROR_SUCCESS;
std::vector<IP_ADAPTER_ADDRESSES> advec;
ULONG len = 0;
for (int i=0; i < 3; i++) {
if (len == 0) {
advec.resize(8);
}
else {
size_t count = len / sizeof(IP_ADAPTER_ADDRESSES);
advec.resize(count);
}
len = advec.size() * sizeof(IP_ADAPTER_ADDRESSES);
ret = GetAdaptersAddresses(AF_UNSPEC, (
GAA_FLAG_SKIP_UNICAST |
GAA_FLAG_SKIP_ANYCAST |
GAA_FLAG_SKIP_MULTICAST |
GAA_FLAG_SKIP_FRIENDLY_NAME),
NULL, &advec[0], &len);
if (ret != ERROR_BUFFER_OVERFLOW) {
break;
}
}
if (ret != ERROR_SUCCESS) {
error("Unable to get DNS servers: %08x", ret);
return;
}
char pcap_name[1024];
const char *pcap_guid = NULL;
if (*o.device && DnetName2PcapName(o.device, pcap_name, sizeof(pcap_name))) {
// pcap_guid is the AdapterName for the requested adapter.
pcap_guid = strchr(pcap_name, '{');
}
for (IP_ADAPTER_ADDRESSES *a = &advec[0]; a != NULL; a = a->Next) {
if (a->OperStatus != IfOperStatusUp)
continue;
// If user requested an interface with -e,
// don't use DNS servers configured on other interfaces.
if (pcap_guid && 0 != strcasecmp(a->AdapterName, pcap_guid))
continue;
for (IP_ADAPTER_DNS_SERVER_ADDRESS_XP *d = a->FirstDnsServerAddress;
d != NULL; d = d->Next) {
const sockaddr_storage* ss = (sockaddr_storage*)d->Address.lpSockaddr;
size_t sslen = d->Address.iSockaddrLength;
if (ss->ss_family == AF_INET) {
if (!a->Ipv4Enabled) continue;
}
else if (ss->ss_family == AF_INET6) {
if (!a->Ipv6Enabled) continue;
/* Windows default site-local IPv6 DNS servers */
if (0 == memcmp(&((sockaddr_in6*)ss)->sin6_addr,
"\xfe\xc0\x00\x00\x00\x00\xff\xff", 8))
continue;
}
else {
continue;
}
add_dns_server(ss, sslen, inet_ntop_ez(ss, sslen));
}
}
}
#endif // WIN32
// Parses /etc/resolv.conf (unix) and adds all the nameservers found via the
// add_dns_server() function.
static void parse_resolvdotconf() {
FILE *fp;
char buf[2048], *tp;
char fmt[32];
char ipaddr[INET6_ADDRSTRLEN+1];
fp = fopen("/etc/resolv.conf", "r");
if (fp == NULL) {
if (firstrun) gh_perror("mass_dns: warning: Unable to open /etc/resolv.conf. Try using --system-dns or specify valid servers with --dns-servers");
return;
}
Snprintf(fmt, sizeof(fmt), "nameserver %%%us", INET6_ADDRSTRLEN);
while (fgets(buf, sizeof(buf), fp)) {
tp = buf;
// Clip off comments #, \r, \n
while (*tp != '\r' && *tp != '\n' && *tp != '#' && *tp) tp++;
*tp = '\0';
tp = buf;
// Skip any leading whitespace
while (*tp == ' ' || *tp == '\t') tp++;
if (sscanf(tp, fmt, ipaddr) == 1) add_dns_server(ipaddr);
}
fclose(fp);
}
static void parse_etchosts(const char *fname) {
std::ifstream ifs(fname);
std::string line;
sockaddr_storage ia;
size_t ialen;
// First, load localhost names
line = "localhost";
if (0 == resolve_numeric("::1", 0, &ia, &ialen, AF_INET6)) {
host_cache.add(ia, line);
etchosts[NameRecord(line, DNS::AAAA)] = ia;
}
if (0 == resolve_numeric("127.0.0.1", 0, &ia, &ialen, AF_INET)) {
host_cache.add(ia, line);
etchosts[NameRecord(line, DNS::A)] = ia;
}
if (ifs.fail()) return; // silently is OK
while (std::getline(ifs, line)) {
std::istringstream iss(line);
std::string addr, hname;
if (!(iss >> addr >> hname)) {
// We need more than 1 token per line
continue;
}
// If hostname is a comment or address begins a comment, no good.
if (hname[0] == '#' || addr.find('#') != std::string::npos) {
continue;
}
if (0 == resolve_numeric(addr.c_str(), 0, &ia, &ialen, AF_UNSPEC)) {
size_t commentpos = std::string::npos;
bool first = true;
do {
// If there's a comment in the hostname, strip it.
commentpos = hname.find('#');
if (commentpos != std::string::npos) {
hname.erase(commentpos);
}
if (!hname.empty()) {
if (first)
host_cache.add(ia, hname);
if (ia.ss_family == AF_INET) {
etchosts[NameRecord(hname, DNS::A)] = ia;
}
else if (ia.ss_family == AF_INET6) {
etchosts[NameRecord(hname, DNS::AAAA)] = ia;
}
}
first = false;
// Keep going until we find a comment or run out of tokens
} while (commentpos == std::string::npos && (iss >> hname));
}
else if (o.debugging)
log_write(LOG_STDOUT, "Unable to parse /etc/hosts address: %s\n", addr.c_str());
}
}
static void etchosts_init(void) {
static int initialized = 0;
if (initialized) return;
initialized = 1;
#ifdef WIN32
char windows_dir[1024];
char tpbuf[2048];
int has_backslash;
if (!GetWindowsDirectory(windows_dir, sizeof(windows_dir)))
fatal("Failed to determine your windows directory");
// If it has a backslash it's C:\, otherwise something like C:\WINNT
has_backslash = (windows_dir[strlen(windows_dir)-1] == '\\');
// Windows NT/2000/XP/2K3:
Snprintf(tpbuf, sizeof(tpbuf), "%s%ssystem32\\drivers\\etc\\hosts", windows_dir, has_backslash ? "" : "\\");
parse_etchosts(tpbuf);
#else
parse_etchosts("/etc/hosts");
#endif // WIN32
}
/* Initialize the global servs list of DNS servers. If the --dns-servers option
* was given, use the listed servers; otherwise get the list from resolv.conf or
* the Windows registry. If o.mass_dns is false, the list of servers is empty.
* This function caches the results from the first time it is run. */
static void init_servs(void) {
static bool initialized = false;
if (initialized)
return;
initialized = true;
if (!o.mass_dns)
return;
if (o.dns_servers) {
add_dns_server(o.dns_servers);
} else {
#ifndef WIN32
parse_resolvdotconf();
#else
win32_get_servers();
#endif
}
}
static bool system_resolve(DNS::Request &reqt)
{
char hostname[FQDN_LEN + 1] = "";
int af = AF_INET;
struct addrinfo *ai_result = NULL, *ai = NULL;
if (reqt.type == DNS::PTR) {
assert(reqt.ssv.size() > 0);
if (getnameinfo((const struct sockaddr *) &reqt.ssv.front(),
sizeof(sockaddr_storage), hostname,
sizeof(hostname), NULL, 0, NI_NAMEREQD) == 0) {
reqt.name = hostname;
}
}
else {
switch (reqt.type) {
case DNS::A:
af = AF_INET;
break;
case DNS::AAAA:
af = AF_INET6;
break;
case DNS::ANY:
af = AF_UNSPEC;
break;
default:
error("System DNS resolution of %s could not be performed.\n", reqt.repr());
return false;
break;
}
ai_result = resolve_all(reqt.name.c_str(), af);
for (ai = ai_result; ai != NULL; ai = ai->ai_next) {
if (ai->ai_addrlen <= sizeof(struct sockaddr_storage)) {
reqt.ssv.push_back(*(struct sockaddr_storage *)ai->ai_addr);
}
}
if (ai_result != NULL)
freeaddrinfo(ai_result);
else
return false;
}
return true;
}
//------------------- Main loops ---------------------
// Actual main loop
static void nmap_mass_dns_core(DNS::Request *requests, int num_requests) {
std::list<request *>::iterator reqI;
request *tpreq;
int timeout = 0;
int i;
char spmobuf[1024];
// If necessary, set up the dns server list
init_servs();
if (servs.size() == 0) {
if (firstrun)
error("mass_dns: warning: Unable to determine any DNS servers. "
"Reverse DNS is disabled. Try using --system-dns or "
"specify valid servers with --dns-servers");
return;
}
// If necessary, read /etc/hosts and put entries into the hashtable
etchosts_init();
total_reqs = 0;
// Set up the request structure
for (int i=0; i < num_requests; i++)
{
DNS::Request &reqt = requests[i];
// See if it's cached
std::map<NameRecord, sockaddr_storage>::const_iterator it;
switch (reqt.type) {
case DNS::PTR:
assert(reqt.ssv.size() > 0);
if (host_cache.lookup(reqt.ssv.front(), reqt.name)) {
continue;
}
break;
case DNS::ANY:
it = etchosts.find(NameRecord(reqt.name, DNS::A));
if (it != etchosts.end()) {
reqt.ssv.push_back(it->second);
}
it = etchosts.find(NameRecord(reqt.name, DNS::AAAA));
if (it != etchosts.end()) {
reqt.ssv.push_back(it->second);
}
if (reqt.ssv.size() > 0) {
continue;
}
break;
case DNS::A:
case DNS::AAAA:
it = etchosts.find(NameRecord(reqt.name, reqt.type));
if (it != etchosts.end()) {
reqt.ssv.push_back(it->second);
continue;
}
break;
case DNS::NONE:
// This is okay, just don't make a request.
continue;
break;
default:
error("%s: Unknown DNS request type %s\n", __func__, reqt.repr());
continue;
break;
}
tpreq = new request;
tpreq->targ = &reqt;
tpreq->tries = 0;
tpreq->servers_tried = 0;
tpreq->alt_req = false;
tpreq->id = DNS::Factory::progressiveId++;
new_reqs.push_back(tpreq);
if (reqt.type == DNS::ANY) {
DNS::Request *req_aaaa = new DNS::Request;
req_aaaa->type = DNS::AAAA;
req_aaaa->name = reqt.name;
req_aaaa->userdata = &reqt;
request *tpreq_alt = new request;
*tpreq_alt = *tpreq;
tpreq_alt->targ = req_aaaa;
tpreq_alt->alt_req = true;
tpreq_alt->id = DNS::Factory::progressiveId++;
new_reqs.push_back(tpreq_alt);
}
stat_actual++;
}
total_reqs = new_reqs.size();
if (total_reqs > 0) {
// And finally, do it!
if ((dnspool = nsock_pool_new(NULL)) == NULL)
fatal("Unable to create nsock pool in %s()", __func__);
nmap_set_nsock_logger();
nmap_adjust_loglevel(o.packetTrace());
if (*o.device)
nsock_pool_set_device(dnspool, o.device);
if (o.proxy_chain)
nsock_pool_set_proxychain(dnspool, o.proxy_chain);
connect_dns_servers();
deferred_reqs.clear();
read_timeout_index = MIN(sizeof(read_timeouts)/sizeof(read_timeouts[0]), servs.size()) - 1;
Snprintf(spmobuf, sizeof(spmobuf), "Parallel DNS resolution of %d host%s.", stat_actual, stat_actual-1 ? "s" : "");
SPM = new ScanProgressMeter(spmobuf);
stat_actual = total_reqs;
int since_last = 0;
nsock_loopstatus status = nsock_loop(dnspool, 0);
while (status == NSOCK_LOOP_TIMEOUT && total_reqs > 0) {
since_last += timeout;
if (since_last > MIN_DNS_TIMEOUT) {
since_last = 0;
timeout = deal_with_timedout_reads(true);
}
else {
timeout = deal_with_timedout_reads(false);
}
do_possible_writes();
if (total_reqs <= 0) break;
/* Because this can change with runtime interaction */
nmap_adjust_loglevel(o.packetTrace());
nsock_loop(dnspool, timeout);
}
SPM->endTask(NULL, NULL);
delete SPM;
close_dns_servers();
nsock_pool_delete(dnspool);
}
if (deferred_reqs.size()) {
if (o.debugging)
log_write(LOG_STDOUT, "Performing system-dns for %d domain names that were deferred\n", (int) deferred_reqs.size());
Snprintf(spmobuf, sizeof(spmobuf), "System DNS resolution of %u host%s.", (unsigned) deferred_reqs.size(), deferred_reqs.size()-1 ? "s" : "");
SPM = new ScanProgressMeter(spmobuf);
for(i=0, reqI = deferred_reqs.begin(); reqI != deferred_reqs.end(); reqI++, i++) {
if (keyWasPressed())
SPM->printStats((double) i / deferred_reqs.size(), NULL);
tpreq = *reqI;
if (system_resolve(*tpreq->targ)) {
stat_ok++;
stat_cname++;
}
delete tpreq;
}
SPM->endTask(NULL, NULL);
delete SPM;
}
deferred_reqs.clear();
}
static void nmap_system_dns_core(DNS::Request requests[], int num_requests) {
char spmobuf[1024];
stat_actual = 0;
for (int i=0; i < num_requests; i++) {
if (requests[i].type != DNS::NONE) {
stat_actual++;
}
}
Snprintf(spmobuf, sizeof(spmobuf), "System DNS resolution of %d host%s.", stat_actual, stat_actual-1 ? "s" : "");
SPM = new ScanProgressMeter(spmobuf);
for (int i=0; i < num_requests; i++)
{
if (keyWasPressed())
SPM->printStats((double) i / num_requests, NULL);
DNS::Request &r = requests[i];
if (r.type != DNS::NONE && system_resolve(r)) {
stat_ok++;
}
}
SPM->endTask(NULL, NULL);
delete SPM;
}
// Publicly available function. Basically just a wrapper so we
// can record time information, restart statistics, etc.
void nmap_mass_dns(DNS::Request requests[], int num_requests) {
struct timeval now;
gettimeofday(&starttv, NULL);
stat_actual = stat_ok = stat_nx = stat_sf = stat_trans = stat_dropped = stat_cname = 0;
if (o.mass_dns)
nmap_mass_dns_core(requests, num_requests);
else
nmap_system_dns_core(requests, num_requests);
gettimeofday(&now, NULL);
if (stat_actual > 0) {
if (o.debugging || o.verbose >= 3) {
if (o.mass_dns) {
// #: Number of DNS servers used
// OK: Number of fully reverse resolved queries
// NX: Number of confirmations of 'No such reverse domain eXists'
// DR: Dropped IPs (no valid responses were received)
// SF: Number of IPs that got 'Server Failure's
// TR: Total number of transmissions necessary. The number of domains is ideal, higher is worse
log_write(LOG_STDOUT, "DNS resolution of %d IPs took %.2fs. Mode: Async [#: %lu, OK: %d, NX: %d, DR: %d, SF: %d, TR: %d, CN: %d]\n",
stat_actual, TIMEVAL_FSEC_SUBTRACT(now, starttv),
(unsigned long) servs.size(), stat_ok, stat_nx, stat_dropped, stat_sf, stat_trans, stat_cname);
} else {
log_write(LOG_STDOUT, "DNS resolution of %d IPs took %.2fs. Mode: System [OK: %d, ??: %d]\n",
stat_actual, TIMEVAL_FSEC_SUBTRACT(now, starttv),
stat_ok, stat_actual - stat_ok);
}
}
}
firstrun=0;
}
void nmap_mass_rdns(Target ** targets, int num_targets) {
/* Second, make an array of pointer to DNS::Request to suit the interface of
nmap_mass_rdns. */
DNS::Request *requests = new DNS::Request[num_targets];
for (int i = 0; i < num_targets; i++) {
Target *target = targets[i];
if (!(target->flags & HOST_UP) && !o.always_resolve) continue;
DNS::Request &reqt = requests[i];
reqt.ssv.push_back(*target->TargetSockAddr());
reqt.type = DNS::PTR;
}
nmap_mass_dns(requests, num_targets);
for (int i = 0; i < num_targets; i++) {
std::string &name = requests[i].name;
if (!name.empty()) {
targets[i]->setHostName(name.c_str());
}
}
delete[] requests;
}
// Returns a list of known DNS servers
std::list<std::string> get_dns_servers() {
init_servs();
// If the user said --system-dns (!o.mass_dns), we should never return a list
// of servers.
assert(o.mass_dns || servs.empty());
std::list<dns_server>::iterator servI;
std::list<std::string> serverList;
for(servI = servs.begin(); servI != servs.end(); servI++) {
serverList.push_back(inet_socktop((struct sockaddr_storage *) &servI->addr));
}
return serverList;
}
bool DNS::Factory::ipToPtr(const sockaddr_storage &ip, std::string &ptr)
{
static const size_t maxlen = sizeof("0.0.1.1.2.2.3.3.4.4.5.5.6.6.7.7.8.8.9.9.a.a.b.b.c.c.d.d.e.e.f.f.ip6.arpa");
ptr.reserve(maxlen);
char tmp[INET_ADDRSTRLEN];
switch (ip.ss_family) {
case AF_INET:
{
const u32 ipv4_addr = ((const sockaddr_in *) &ip)->sin_addr.s_addr;
const u8 *ipv4_c = (const u8 *)&ipv4_addr;
sprintf(tmp, "%d.%d.%d.%d", ipv4_c[3], ipv4_c[2], ipv4_c[1], ipv4_c[0]);
ptr = tmp;
ptr += IPV4_PTR_DOMAIN;
break;
}
case AF_INET6:
{
ptr.clear();
const struct sockaddr_in6 &s6 = (const struct sockaddr_in6 &) ip;
const u8 * ipv6 = s6.sin6_addr.s6_addr;
for (short i=15; i>=0; --i)
{
sprintf(tmp, "%02x", ipv6[i]);
ptr += '.';
ptr += tmp[1];
ptr += '.';
ptr += tmp[0];
}
ptr.erase(ptr.begin());
ptr += IPV6_PTR_DOMAIN;
break;
}
default:
return false;
}
return true;
}
bool DNS::Factory::ptrToIp(const std::string &ptr, sockaddr_storage &ip)
{
const char *cptr = ptr.c_str();
const char *p = NULL;
memset(&ip, 0, sizeof(sockaddr_storage));
// Check whether the name ends with the IPv4 PTR domain
if (NULL != (p = strcasestr(cptr + ptr.length() + 1 - sizeof(C_IPV4_PTR_DOMAIN), C_IPV4_PTR_DOMAIN)))
{
struct sockaddr_in *ip4 = (struct sockaddr_in *)&ip;
static const u8 place_value[] = {1, 10, 100};
u8 *v = (u8 *) &(ip4->sin_addr.s_addr);
size_t place = 0;
size_t i = 0;
p--;
while (p >= cptr && i < sizeof(ip4->sin_addr.s_addr))
{
if (*p == '.')
{
place = 0;
p--;
i++;
}
if (p < cptr)
{
break;
}
u8 n = *p;
if (n >= '0' && n <= '9') { // 0-9
n -= 0x30;
}
else { // invalid
return false;
}
v[i] += n * place_value[place];
place++;
p--;
}
ip.ss_family = AF_INET;
}
// If not, check IPv6
else if (NULL != (p = strcasestr(cptr + ptr.length() + 1 - sizeof(C_IPV6_PTR_DOMAIN), C_IPV6_PTR_DOMAIN)))
{
struct sockaddr_in6 *ip6 = (struct sockaddr_in6 *)&ip;
u8 alt = 0;
size_t i=0;
p--;
while (p >= cptr && i < sizeof(ip6->sin6_addr.s6_addr))
{
if (*p == '.')
{
p--;
}
if (p < cptr)
{
break;
}
u8 n = *p;
// First subtract base regardless of underflow:
if (n < 0x3A) { // 0-9
n -= 0x30;
}
else if (n < 0x47) { // A-F
n -= 0x37;
}
else if (n < 0x67) { // a-f
n -= 0x57;
}
else { // invalid
return false;
}
// Now catch any of the underflow conditions above:
if (n > 0xf) { // invalid
return false;
}
if (alt == 0) { // high nibble
ip6->sin6_addr.s6_addr[i] += n << 4;
alt = 1;
}
else { // low nibble
ip6->sin6_addr.s6_addr[i] += n;
alt = 0;
i++;
}
p--;
}
ip.ss_family = AF_INET6;
}
return true;
}
size_t DNS::Factory::buildSimpleRequest(u16 id, const std::string &name, RECORD_TYPE rt, u8 *buf, size_t maxlen)
{
size_t ret=0 , tmp=0;
DNS_CHECK_ACCUMLATE(ret, tmp, putUnsignedShort(id, buf, ID, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, putUnsignedShort(OP_STANDARD_QUERY | RECURSION_DESIRED, buf, FLAGS_OFFSET, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, putUnsignedShort(1, buf, QDCOUNT, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, putUnsignedShort(0, buf, ANCOUNT, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, putUnsignedShort(0, buf, NSCOUNT, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, putUnsignedShort(0, buf, ARCOUNT, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, putDomainName(name, buf, DATA, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, putUnsignedShort(rt, buf, ret, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, putUnsignedShort(CLASS_IN, buf, ret, maxlen));
return ret;
}
size_t DNS::Factory::buildReverseRequest(u16 id, const sockaddr_storage &ip, u8 *buf, size_t maxlen)
{
std::string name;
if(ipToPtr(ip,name))
return buildSimpleRequest(id, name, PTR, buf, maxlen);
return 0;
}
size_t DNS::Factory::putUnsignedShort(u16 num, u8 *buf, size_t offset, size_t maxlen)
{
size_t max_access = offset+1;
if(buf && (maxlen > max_access))
{
buf[offset] = (num >> 8) & 0xFF;
buf[max_access] = num & 0xFF;
return 2;
}
return 0;
}
size_t DNS::Factory::putDomainName(const std::string &name, u8 *buf, size_t offset, size_t maxlen)
{
size_t ret=0;
if( !( buf && (maxlen > (offset + name.length() + 1))) ) return ret;
std::string namew = name + ".";
std::string accumulator;
for (std::string::const_iterator c=namew.begin(); c != namew.end(); ++c)
{
if((*c)=='.')
{
u8 length = accumulator.length();
*(buf+offset+ret) = length;
ret += 1;
memcpy(buf+offset+ret, accumulator.c_str(), length);
ret += length;
accumulator.clear();
}
else
accumulator += (*c);
}
*(buf+offset+ret) = 0;
ret += 1;
return ret;
}
size_t DNS::Factory::parseUnsignedShort(u16 &num, const u8 *buf, size_t offset, size_t maxlen)
{
size_t max_access = offset+1;
if(buf && (maxlen > max_access))
{
const u8 * n = buf + offset;
num = n[1] + (n[0]<<8);
return 2;
}
return 0;
}
size_t DNS::Factory::parseUnsignedInt(u32 &num, const u8 *buf, size_t offset, size_t maxlen)
{
size_t max_access = offset+3;
if(buf && (maxlen > max_access))
{
const u8 * n = buf + offset;
num = n[3] + (n[2]<<8) + (n[1]<<16) + (n[0]<<24);
return 4;
}
return 0;
}
size_t DNS::Factory::parseIPv4(struct in_addr &addr, const u8 *buf, size_t offset, size_t maxlen)
{
size_t max_access = offset+3;
if(buf && (maxlen > max_access))
{
memcpy(&addr, buf + offset, 4);
return 4;
}
return 0;
}
size_t DNS::Factory::parseIPv6(struct in6_addr &addr, const u8 *buf, size_t offset, size_t maxlen)
{
size_t max_access = offset+15;
if(buf && (maxlen > max_access))
{
memcpy(&addr, buf + offset, 16);
return 16;
}
return 0;
}
size_t DNS::Factory::parseDomainName(std::string &name, const u8 *buf, size_t offset, size_t maxlen)
{
size_t tmp = 0;
size_t max_offset = offset;
size_t curr_offset = offset;
name.clear();
while(u8 label_length = buf[curr_offset])
{
if((label_length & COMPRESSED_NAME) == COMPRESSED_NAME)
{
u16 real_offset;
tmp = parseUnsignedShort(real_offset, buf, curr_offset, maxlen);
if (tmp < 1) {
return 0;
}
if (curr_offset >= max_offset) {
max_offset = curr_offset + tmp;
}
real_offset -= COMPRESSED_NAME<<8;
if(real_offset < curr_offset)
{
curr_offset = real_offset;
continue;
}
else {
if (o.debugging) {
log_write(LOG_STDOUT, "DNS compression pointer is not backwards\n");
}
return 0;
}
}
if (label_length > DNS_LABEL_MAX_LENGTH) {
if (o.debugging) {
log_write(LOG_STDOUT, "DNS label exceeds max length\n");
}
return 0;
}
curr_offset++;
DNS_CHECK_UPPER_BOUND(curr_offset + label_length, maxlen);
name.append(reinterpret_cast<const char *>(buf + curr_offset), label_length);
curr_offset += label_length;
if (curr_offset > max_offset) {
max_offset = curr_offset;
}
name += '.';
if (name.length() > DNS_NAME_MAX_LENGTH - 1) {
if (o.debugging) {
log_write(LOG_STDOUT, "DNS name exceeds max length\n");
}
return 0;
}
}
if (max_offset == curr_offset && buf[curr_offset] == '\0') {
max_offset++;
}
std::string::iterator it = name.end()-1;
if( *it == '.') name.erase(it);
return max_offset - offset;
}
size_t DNS::A_Record::parseFromBuffer(const u8 *buf, size_t offset, size_t maxlen, RECORD_TYPE rt)
{
size_t tmp, ret = 0;
struct sockaddr_in * ip4addr = (sockaddr_in *) &value;
struct sockaddr_in6 * ip6addr = (sockaddr_in6 *) &value;
memset(&value, 0, sizeof(value));
switch (rt) {
case DNS::A:
DNS_CHECK_ACCUMLATE(ret, tmp, Factory::parseIPv4(ip4addr->sin_addr, buf, offset, maxlen));
ip4addr->sin_family = AF_INET;
break;
case DNS::AAAA:
DNS_CHECK_ACCUMLATE(ret, tmp, Factory::parseIPv6(ip6addr->sin6_addr, buf, offset, maxlen));
ip6addr->sin6_family = AF_INET6;
break;
default:
return 0;
break;
}
return ret;
}
size_t DNS::Query::parseFromBuffer(const u8 *buf, size_t offset, size_t maxlen)
{
size_t ret=0;
if (buf && ((maxlen - offset) > 5))
{
size_t tmp=0;
DNS_CHECK_ACCUMLATE(ret, tmp, Factory::parseDomainName(name, buf, offset+ret, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, Factory::parseUnsignedShort(record_type, buf, offset+ret, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, Factory::parseUnsignedShort(record_class, buf, offset+ret, maxlen));
}
return ret;
}
size_t DNS::Answer::parseFromBuffer(const u8 *buf, size_t offset, size_t maxlen)
{
size_t ret=0;
if (buf && ((maxlen - offset) > 7))
{
size_t tmp;
DNS_CHECK_ACCUMLATE(ret, tmp, Factory::parseDomainName(name, buf, offset+ret, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, Factory::parseUnsignedShort(record_type, buf, offset+ret, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, Factory::parseUnsignedShort(record_class, buf, offset+ret, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, Factory::parseUnsignedInt(ttl, buf, offset+ret, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, Factory::parseUnsignedShort(length, buf, offset+ret, maxlen));
DNS_CHECK_UPPER_BOUND(offset+ret+length, maxlen);
switch(record_type)
{
case A:
case AAAA:
{
record = new A_Record();
break;
}
case CNAME:
{
record = new CNAME_Record();
break;
}
case PTR:
{
record = new PTR_Record();
break;
}
default:
return 0;
}
DNS_CHECK_ACCUMLATE(ret, tmp, record->parseFromBuffer(buf, offset+ret, maxlen, (RECORD_TYPE) record_type));
}
return ret;
}
DNS::Answer& DNS::Answer::operator=(const Answer &r)
{
name = r.name;
record_type = r.record_type;
record_class = r.record_class;
ttl = r.ttl;
length = r.length;
record = r.record->clone();
return *this;
}
size_t DNS::Packet::parseFromBuffer(const u8 *buf, size_t maxlen)
{
if( !buf || maxlen < DATA) return 0;
size_t tmp, ret = 0;
DNS_CHECK_ACCUMLATE(ret, tmp, Factory::parseUnsignedShort(id, buf, ID, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, Factory::parseUnsignedShort(flags, buf, FLAGS_OFFSET, maxlen));
u16 queries_counter, answers_counter, authorities_counter, additionals_counter;
DNS_CHECK_ACCUMLATE(ret, tmp, Factory::parseUnsignedShort(queries_counter, buf, QDCOUNT, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, Factory::parseUnsignedShort(answers_counter, buf, ANCOUNT, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, Factory::parseUnsignedShort(authorities_counter, buf, NSCOUNT, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, Factory::parseUnsignedShort(additionals_counter, buf, ARCOUNT, maxlen));
queries.clear();
for(u16 i=0; i<queries_counter; ++i)
{
Query q;
DNS_CHECK_ACCUMLATE(ret, tmp, q.parseFromBuffer(buf, ret, maxlen));
queries.push_back(q);
}
answers.clear();
for(u16 i=0; i<answers_counter; ++i)
{
Answer a;
DNS_CHECK_ACCUMLATE(ret, tmp, a.parseFromBuffer(buf, ret, maxlen));
answers.push_back(a);
};
return ret;
}
const char *DNS::Request::repr() const
{
#define REPR_BUFSIZE (FQDN_LEN + 16)
static char buf[REPR_BUFSIZE] = "\0";
switch(type) {
case DNS::NONE:
return "Uninitialized request";
break;
case DNS::A:
case DNS::AAAA:
case DNS::ANY:
Snprintf(buf, REPR_BUFSIZE, "%s/%d", name.c_str(), type);
break;
case DNS::PTR:
if (ssv.size() > 0) {
return inet_ntop_ez(&ssv.front(), sizeof(struct sockaddr_storage));
}
else {
return "Uninitialized PTR request";
}
break;
default:
Snprintf(buf, REPR_BUFSIZE, "Invalid request: %d", type);
break;
}
return buf;
}