1
0
mirror of https://github.com/nmap/nmap.git synced 2025-12-06 04:31:29 +00:00
Files
nmap/zenmap/radialnet/gui/RadialNet.py
dmiller 9e4d6f5f5c Fix encoding issues related to Python 3 upgrade.
Python 3 str() is a unicode already, so can't be decoded.
subprocess.Popen needs to be in text mode (universal_newlines is the
oldest compatible kwarg for this) in order to do line-based buffering.
In general, all the filesystem encoding stuff we were doing is done by
Python itself now.
2022-12-07 20:34:07 +00:00

2023 lines
61 KiB
Python

# vim: set encoding=utf-8 :
# ***********************IMPORTANT NMAP LICENSE TERMS************************
# * *
# * The Nmap Security Scanner is (C) 1996-2022 Nmap Software LLC ("The Nmap *
# * Project"). Nmap is also a registered trademark of the Nmap Project. *
# * *
# * This program is distributed under the terms of the Nmap Public Source *
# * License (NPSL). The exact license text applying to a particular Nmap *
# * release or source code control revision is contained in the LICENSE *
# * file distributed with that version of Nmap or source code control *
# * revision. More Nmap copyright/legal information is available from *
# * https://nmap.org/book/man-legal.html, and further information on the *
# * NPSL license itself can be found at https://nmap.org/npsl/ . This *
# * header summarizes some key points from the Nmap license, but is no *
# * substitute for the actual license text. *
# * *
# * Nmap is generally free for end users to download and use themselves, *
# * including commercial use. It is available from https://nmap.org. *
# * *
# * The Nmap license generally prohibits companies from using and *
# * redistributing Nmap in commercial products, but we sell a special Nmap *
# * OEM Edition with a more permissive license and special features for *
# * this purpose. See https://nmap.org/oem/ *
# * *
# * If you have received a written Nmap license agreement or contract *
# * stating terms other than these (such as an Nmap OEM license), you may *
# * choose to use and redistribute Nmap under those terms instead. *
# * *
# * The official Nmap Windows builds include the Npcap software *
# * (https://npcap.com) for packet capture and transmission. It is under *
# * separate license terms which forbid redistribution without special *
# * permission. So the official Nmap Windows builds may not be *
# * redistributed without special permission (such as an Nmap OEM *
# * license). *
# * *
# * Source is provided to this software because we believe users have a *
# * right to know exactly what a program is going to do before they run it. *
# * This also allows you to audit the software for security holes. *
# * *
# * Source code also allows you to port Nmap to new platforms, fix bugs, *
# * and add new features. You are highly encouraged to submit your *
# * changes as a Github PR or by email to the dev@nmap.org mailing list *
# * for possible incorporation into the main distribution. Unless you *
# * specify otherwise, it is understood that you are offering us very *
# * broad rights to use your submissions as described in the Nmap Public *
# * Source License Contributor Agreement. This is important because we *
# * fund the project by selling licenses with various terms, and also *
# * because the inability to relicense code has caused devastating *
# * problems for other Free Software projects (such as KDE and NASM). *
# * *
# * The free version of Nmap is distributed in the hope that it will be *
# * useful, but WITHOUT ANY WARRANTY; without even the implied warranty of *
# * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Warranties, *
# * indemnification and commercial support are all available through the *
# * Npcap OEM program--see https://nmap.org/oem/ *
# * *
# ***************************************************************************/
import gi
gi.require_version("Gtk", "3.0")
from gi.repository import Gtk, GLib, Gdk
import math
import cairo
from functools import reduce
import radialnet.util.geometry as geometry
import radialnet.util.misc as misc
from radialnet.core.Coordinate import PolarCoordinate, CartesianCoordinate
from radialnet.core.Interpolation import Linear2DInterpolator
from radialnet.core.Graph import Node
from radialnet.gui.NodeWindow import NodeWindow
from radialnet.gui.Image import Icons, get_pixels_for_cairo_image_surface
REGION_COLORS = [(1.0, 0.0, 0.0), (1.0, 1.0, 0.0), (0.0, 1.0, 0.0)]
REGION_RED = 0
REGION_YELLOW = 1
REGION_GREEN = 2
SQUARE_TYPES = ['router', 'switch', 'wap']
ICON_DICT = {'router': 'router',
'switch': 'switch',
'wap': 'wireless',
'firewall': 'firewall'}
POINTER_JUMP_TO = 0
POINTER_INFO = 1
POINTER_GROUP = 2
POINTER_FILL = 3
LAYOUT_SYMMETRIC = 0
LAYOUT_WEIGHTED = 1
INTERPOLATION_CARTESIAN = 0
INTERPOLATION_POLAR = 1
FILE_TYPE_PDF = 1
FILE_TYPE_PNG = 2
FILE_TYPE_PS = 3
FILE_TYPE_SVG = 4
class RadialNet(Gtk.DrawingArea):
"""
Radial network visualization widget
"""
def __init__(self, layout=LAYOUT_SYMMETRIC):
"""
Constructor method of RadialNet widget class
@type number_of_rings: number
@param number_of_rings: Number of rings in radial layout
"""
self.__center_of_widget = (0, 0)
self.__graph = None
self.__number_of_rings = 0
self.__ring_gap = 30
self.__min_ring_gap = 10
self.__layout = layout
self.__interpolation = INTERPOLATION_POLAR
self.__interpolation_slow_in_out = True
self.__animating = False
self.__animation_rate = 1000 // 60 # 60Hz (human perception factor)
self.__number_of_frames = 60
self.__scale = 1.0
# rotated so that single-host traceroute doesn't have overlapping hosts
self.__rotate = 225
self.__translation = (0, 0)
self.__button1_press = False
self.__button2_press = False
self.__button3_press = False
self.__last_motion_point = None
self.__fisheye = False
self.__fisheye_ring = 0
self.__fisheye_spread = 0.5
self.__fisheye_interest = 2
self.__show_address = True
self.__show_hostname = True
self.__show_icon = True
self.__show_latency = False
self.__show_ring = True
self.__show_region = True
self.__region_color = REGION_RED
self.__node_views = dict()
self.__last_group_node = None
self.__pointer_status = POINTER_JUMP_TO
self.__sorted_nodes = list()
self.__icon = Icons()
super(RadialNet, self).__init__()
self.connect('draw', self.draw)
self.connect('button_press_event', self.button_press)
self.connect('button_release_event', self.button_release)
self.connect('motion_notify_event', self.motion_notify)
self.connect('enter_notify_event', self.enter_notify)
self.connect('leave_notify_event', self.leave_notify)
self.connect('key_press_event', self.key_press)
self.connect('key_release_event', self.key_release)
self.connect('scroll_event', self.scroll_event)
self.add_events(Gdk.EventMask.BUTTON_PRESS_MASK |
Gdk.EventMask.BUTTON_RELEASE_MASK |
Gdk.EventMask.ENTER_NOTIFY_MASK |
Gdk.EventMask.LEAVE_NOTIFY_MASK |
Gdk.EventMask.KEY_PRESS_MASK |
Gdk.EventMask.KEY_RELEASE_MASK |
Gdk.EventMask.POINTER_MOTION_HINT_MASK |
Gdk.EventMask.POINTER_MOTION_MASK |
Gdk.EventMask.SCROLL_MASK)
self.set_can_focus(True)
self.grab_focus()
def graph_is_not_empty(function):
"""
Decorator function to prevent the execution when graph not is set
@type function: function
@param function: Protected function
"""
def check_graph_status(*args):
if args[0].__graph is None:
return False
return function(*args)
return check_graph_status
def not_is_in_animation(function):
"""
Decorator function to prevent the execution when graph is animating
@type function: function
@param function: Protected function
"""
def check_animation_status(*args):
if args[0].__animating:
return False
return function(*args)
return check_animation_status
def save_drawing_to_file(self, file, type=FILE_TYPE_PNG):
"""
"""
allocation = self.get_allocation()
if type == FILE_TYPE_PDF:
self.surface = cairo.PDFSurface(file,
allocation.width,
allocation.height)
elif type == FILE_TYPE_PNG:
self.surface = cairo.ImageSurface(cairo.FORMAT_ARGB32,
allocation.width,
allocation.height)
elif type == FILE_TYPE_PS:
self.surface = cairo.PSSurface(file,
allocation.width,
allocation.height)
elif type == FILE_TYPE_SVG:
self.surface = cairo.SVGSurface(file,
allocation.width,
allocation.height)
else:
raise TypeError('unknown surface type')
context = cairo.Context(self.surface)
context.rectangle(0, 0, allocation.width, allocation.height)
context.set_source_rgb(1.0, 1.0, 1.0)
context.fill()
self.__draw(context)
if type == FILE_TYPE_PNG:
self.surface.write_to_png(file)
self.surface.flush()
self.surface.finish()
return True
def get_slow_inout(self):
"""
"""
return self.__interpolation_slow_in_out
def set_slow_inout(self, value):
"""
"""
self.__interpolation_slow_in_out = value
def get_region_color(self):
"""
"""
return self.__region_color
def set_region_color(self, value):
"""
"""
self.__region_color = value
def get_show_region(self):
"""
"""
return self.__show_region
def set_show_region(self, value):
"""
"""
self.__show_region = value
self.queue_draw()
def get_pointer_status(self):
"""
"""
return self.__pointer_status
def set_pointer_status(self, pointer_status):
"""
"""
self.__pointer_status = pointer_status
def get_show_address(self):
"""
"""
return self.__show_address
def get_show_hostname(self):
"""
"""
return self.__show_hostname
def get_show_ring(self):
"""
"""
return self.__show_ring
def set_show_address(self, value):
"""
"""
self.__show_address = value
self.queue_draw()
def set_show_hostname(self, value):
"""
"""
self.__show_hostname = value
self.queue_draw()
def set_show_ring(self, value):
"""
"""
self.__show_ring = value
self.queue_draw()
def get_min_ring_gap(self):
"""
"""
return self.__min_ring_gap
@graph_is_not_empty
@not_is_in_animation
def set_min_ring_gap(self, value):
"""
"""
self.__min_ring_gap = int(value)
if self.__ring_gap < self.__min_ring_gap:
self.__ring_gap = self.__min_ring_gap
self.__update_nodes_positions()
self.queue_draw()
return True
def get_number_of_frames(self):
"""
"""
return self.__number_of_frames
@not_is_in_animation
def set_number_of_frames(self, number_of_frames):
"""
"""
if number_of_frames > 2:
self.__number_of_frames = int(number_of_frames)
return True
self.__number_of_frames = 3
return False
@not_is_in_animation
def update_layout(self):
"""
"""
if self.__graph is None:
return
self.__animating = True
self.__calc_interpolation(self.__graph.get_main_node())
self.__livens_up()
@not_is_in_animation
def set_layout(self, layout):
"""
"""
if self.__layout != layout:
self.__layout = layout
if self.__graph is not None:
self.__animating = True
self.__calc_interpolation(self.__graph.get_main_node())
self.__livens_up()
return True
return False
def get_layout(self):
"""
"""
return self.__layout
@not_is_in_animation
def set_interpolation(self, interpolation):
"""
"""
self.__interpolation = interpolation
return True
def get_interpolation(self):
"""
"""
return self.__interpolation
def get_number_of_rings(self):
"""
"""
return self.__number_of_rings
def get_fisheye_ring(self):
"""
"""
return self.__fisheye_ring
def get_fisheye_interest(self):
"""
"""
return self.__fisheye_interest
def get_fisheye_spread(self):
"""
"""
return self.__fisheye_spread
def get_fisheye(self):
"""
"""
return self.__fisheye
def set_fisheye(self, enable):
"""
"""
self.__fisheye = enable
self.__update_nodes_positions()
self.queue_draw()
def set_fisheye_ring(self, value):
"""
"""
self.__fisheye_ring = value
self.__check_fisheye_ring()
self.__update_nodes_positions()
self.queue_draw()
def set_fisheye_interest(self, value):
"""
"""
self.__fisheye_interest = value
self.__update_nodes_positions()
self.queue_draw()
def set_fisheye_spread(self, value):
"""
"""
self.__fisheye_spread = value
self.__update_nodes_positions()
self.queue_draw()
def get_show_icon(self):
"""
"""
return self.__show_icon
def set_show_icon(self, value):
"""
"""
self.__show_icon = value
self.queue_draw()
def get_show_latency(self):
"""
"""
return self.__show_latency
def set_show_latency(self, value):
"""
"""
self.__show_latency = value
self.queue_draw()
def get_scale(self):
"""
"""
return self.__scale
def get_zoom(self):
"""
"""
return int(round(self.__scale * 100))
def set_scale(self, scale):
"""
"""
if scale >= 0.01:
self.__scale = scale
self.queue_draw()
def set_zoom(self, zoom):
"""
"""
if float(zoom) >= 1:
self.set_scale(float(zoom) / 100.0)
self.queue_draw()
def get_ring_gap(self):
"""
"""
return self.__ring_gap
@not_is_in_animation
def set_ring_gap(self, ring_gap):
"""
"""
if ring_gap >= self.__min_ring_gap:
self.__ring_gap = ring_gap
self.__update_nodes_positions()
self.queue_draw()
def scroll_event(self, widget, event):
"""
"""
if event.direction == Gdk.ScrollDirection.UP:
self.set_scale(self.__scale + 0.01)
if event.direction == Gdk.ScrollDirection.DOWN:
self.set_scale(self.__scale - 0.01)
self.queue_draw()
@graph_is_not_empty
@not_is_in_animation
def key_press(self, widget, event):
"""
"""
key = Gdk.keyval_name(event.keyval)
if key == 'KP_Add':
self.set_ring_gap(self.__ring_gap + 1)
elif key == 'KP_Subtract':
self.set_ring_gap(self.__ring_gap - 1)
elif key == 'Page_Up':
self.set_scale(self.__scale + 0.01)
elif key == 'Page_Down':
self.set_scale(self.__scale - 0.01)
self.queue_draw()
return True
@graph_is_not_empty
def key_release(self, widget, event):
"""
"""
key = Gdk.keyval_name(event.keyval)
if key == 'c':
self.__translation = (0, 0)
elif key == 'r':
self.__show_ring = not self.__show_ring
elif key == 'a':
self.__show_address = not self.__show_address
elif key == 'h':
self.__show_hostname = not self.__show_hostname
elif key == 'i':
self.__show_icon = not self.__show_icon
elif key == 'l':
self.__show_latency = not self.__show_latency
self.queue_draw()
return True
@graph_is_not_empty
@not_is_in_animation
def enter_notify(self, widget, event):
"""
"""
self.grab_focus()
return False
@graph_is_not_empty
@not_is_in_animation
def leave_notify(self, widget, event):
"""
"""
for node in self.__graph.get_nodes():
node.set_draw_info({'over': False})
self.queue_draw()
return False
@graph_is_not_empty
def button_press(self, widget, event):
"""
Drawing callback
@type widget: GtkWidget
@param widget: Gtk widget superclass
@type event: GtkEvent
@param event: Gtk event of widget
@rtype: boolean
@return: Indicator of the event propagation
"""
result = self.__get_node_by_coordinate(self.get_pointer())
if event.button == 1:
self.__button1_press = True
# animate if node is pressed
if self.__pointer_status == POINTER_JUMP_TO and event.button == 1:
# prevent double animation
if self.__animating:
return False
if result is not None:
node, point = result
main_node = self.__graph.get_main_node()
if node != main_node:
if node.get_draw_info('group'):
node.set_draw_info({'group': False})
node.set_subtree_info({'grouped': False,
'group_node': None})
self.__animating = True
self.__calc_interpolation(node)
self.__livens_up()
# group node if it's pressed
elif self.__pointer_status == POINTER_GROUP and event.button == 1:
# prevent group on animation
if self.__animating:
return False
if result is not None:
node, point = result
main_node = self.__graph.get_main_node()
if node != main_node:
if node.get_draw_info('group'):
node.set_draw_info({'group': False})
node.set_subtree_info({'grouped': False,
'group_node': None})
else:
self.__last_group_node = node
node.set_draw_info({'group': True})
node.set_subtree_info({'grouped': True,
'group_node': node})
self.__animating = True
self.__calc_interpolation(self.__graph.get_main_node())
self.__livens_up()
# setting to show node's region
elif self.__pointer_status == POINTER_FILL and event.button == 1:
if result is not None:
node, point = result
if node.get_draw_info('region') == self.__region_color:
node.set_draw_info({'region': None})
else:
node.set_draw_info({'region': self.__region_color})
self.queue_draw()
# show node details
elif event.button == 3 or self.__pointer_status == POINTER_INFO:
if event.button == 3:
self.__button3_press = True
if result is not None:
# first returned value is not meaningful and should be ignored
_, xw, yw = self.get_window().get_origin()
node, point = result
x, y = point
if node in self.__node_views.keys():
self.__node_views[node].present()
elif node.get_draw_info('scanned'):
view = NodeWindow(node, (int(xw + x), int(yw + y)))
def close_view(view, event, node):
view.destroy()
del self.__node_views[node]
view.connect("delete-event", close_view, node)
view.show_all()
self.__node_views[node] = view
return False
@graph_is_not_empty
def button_release(self, widget, event):
"""
Drawing callback
@type widget: GtkWidget
@param widget: Gtk widget superclass
@type event: GtkEvent
@param event: Gtk event of widget
@rtype: boolean
@return: Indicator of the event propagation
"""
if event.button == 1:
self.__button1_press = False
if event.button == 2:
self.__button2_press = False
if event.button == 3:
self.__button3_press = False
self.grab_focus()
return False
@graph_is_not_empty
def motion_notify(self, widget, event):
"""
Drawing callback
@type widget: GtkWidget
@param widget: Gtk widget superclass
@type event: GtkEvent
@param event: Gtk event of widget
@rtype: boolean
@return: Indicator of the event propagation
"""
pointer = self.get_pointer()
for node in self.__graph.get_nodes():
node.set_draw_info({'over': False})
result = self.__get_node_by_coordinate(self.get_pointer())
if result is not None:
result[0].set_draw_info({'over': True})
elif self.__button1_press and self.__last_motion_point is not None:
ax, ay = pointer
ox, oy = self.__last_motion_point
tx, ty = self.__translation
self.__translation = (tx + ax - ox, ty - ay + oy)
self.__last_motion_point = pointer
self.grab_focus()
self.queue_draw()
return False
def draw(self, widget, context):
"""
Drawing callback
@type widget: GtkWidget
@param widget: Gtk widget superclass
@type context: cairo.Context
@param context: cairo context class
@rtype: boolean
@return: Indicator of the event propagation
"""
context.set_source_rgb(1.0, 1.0, 1.0)
context.fill()
self.__draw(context)
return False
@graph_is_not_empty
def __draw(self, context):
"""
Drawing method
"""
# getting allocation reference
allocation = self.get_allocation()
self.__center_of_widget = (allocation.width // 2,
allocation.height // 2)
xc, yc = self.__center_of_widget
ax, ay = self.__translation
# xc = 320 yc = 240
# -1.5 | -0.5 ( 480, 360)
# -1.0 | 0.0 ( 320, 240)
# -0.5 | 0.5 ( 160, 120)
# 0.0 | 1.0 ( 0, 0)
# 0.5 | 1.5 (-160, -120)
# 1.0 | 2.0 (-320, -240)
# 1.5 | 2.5 (-480, -360)
# scaling and translate
factor = -(self.__scale - 1)
context.translate(xc * factor + ax, yc * factor - ay)
if self.__scale != 1.0:
context.scale(self.__scale, self.__scale)
# drawing over node's region
if self.__show_region and not self.__animating:
for node in self.__sorted_nodes:
not_grouped = not node.get_draw_info('grouped')
if node.get_draw_info('region') is not None and not_grouped:
xc, yc = self.__center_of_widget
r, g, b = REGION_COLORS[node.get_draw_info('region')]
start, final = node.get_draw_info('range')
i_radius = node.get_coordinate_radius()
f_radius = self.__calc_radius(self.__number_of_rings - 1)
is_fill_all = abs(final - start) == 360
final = math.radians(final + self.__rotate)
start = math.radians(start + self.__rotate)
context.move_to(xc, yc)
context.set_source_rgba(r, g, b, 0.1)
context.new_path()
context.arc(xc, yc, i_radius, -final, -start)
context.arc_negative(xc, yc, f_radius, -start, -final)
context.close_path()
context.fill()
context.stroke()
if not is_fill_all:
context.set_source_rgb(r, g, b)
context.set_line_width(1)
xa, ya = PolarCoordinate(
i_radius, final).to_cartesian()
xb, yb = PolarCoordinate(
f_radius, final).to_cartesian()
context.move_to(xc + xa, yc - ya)
context.line_to(xc + xb, yc - yb)
context.stroke()
xa, ya = PolarCoordinate(
i_radius, start).to_cartesian()
xb, yb = PolarCoordinate(
f_radius, start).to_cartesian()
context.move_to(xc + xa, yc - ya)
context.line_to(xc + xb, yc - yb)
context.stroke()
# drawing network rings
if self.__show_ring and not self.__animating:
for i in range(1, self.__number_of_rings):
radius = self.__calc_radius(i)
context.arc(xc, yc, radius, 0, 2 * math.pi)
context.set_source_rgb(0.8, 0.8, 0.8)
context.set_line_width(1)
context.stroke()
# drawing nodes and your connections
for edge in self.__graph.get_edges():
# check group constraints for edges
a, b = edge.get_nodes()
a_is_grouped = a.get_draw_info('grouped')
b_is_grouped = b.get_draw_info('grouped')
a_is_group = a.get_draw_info('group')
b_is_group = b.get_draw_info('group')
a_group = a.get_draw_info('group_node')
b_group = b.get_draw_info('group_node')
a_is_child = a in b.get_draw_info('children')
b_is_child = b in a.get_draw_info('children')
last_group = self.__last_group_node
groups = [a_group, b_group]
if last_group in groups and last_group is not None:
self.__draw_edge(context, edge)
elif not a_is_grouped or not b_is_grouped:
if not (a_is_group and b_is_child or
b_is_group and a_is_child):
self.__draw_edge(context, edge)
elif a_group != b_group:
self.__draw_edge(context, edge)
for node in reversed(self.__sorted_nodes):
# check group constraints for nodes
group = node.get_draw_info('group_node')
grouped = node.get_draw_info('grouped')
if group == self.__last_group_node or not grouped:
self.__draw_node(context, node)
def __draw_edge(self, context, edge):
"""
Draw the connection between two nodes
@type : Edge
@param : The second node that will be connected
"""
a, b = edge.get_nodes()
xa, ya = a.get_cartesian_coordinate()
xb, yb = b.get_cartesian_coordinate()
xc, yc = self.__center_of_widget
a_children = a.get_draw_info('children')
b_children = b.get_draw_info('children')
latency = edge.get_weights_mean()
# check if isn't an hierarchy connection
if a not in b_children and b not in a_children:
context.set_source_rgba(1.0, 0.6, 0.1, 0.8)
elif a.get_draw_info('no_route') or b.get_draw_info('no_route'):
context.set_source_rgba(0.0, 0.0, 0.0, 0.8)
else:
context.set_source_rgba(0.1, 0.5, 1.0, 0.8)
# calculating line thickness by latency
if latency is not None:
min = self.__graph.get_min_edge_mean_weight()
max = self.__graph.get_max_edge_mean_weight()
if max != min:
thickness = (latency - min) * 4 / (max - min) + 1
else:
thickness = 1
context.set_line_width(thickness)
else:
context.set_dash([2, 2])
context.set_line_width(1)
context.move_to(xc + xa, yc - ya)
context.line_to(xc + xb, yc - yb)
context.stroke()
context.set_dash([1, 0])
if not self.__animating and self.__show_latency:
if latency is not None:
context.set_font_size(8)
context.set_line_width(1)
context.move_to(xc + (xa + xb) / 2 + 1,
yc - (ya + yb) / 2 + 4)
context.show_text(str(round(latency, 2)))
context.stroke()
def __draw_node(self, context, node):
"""
Draw nodes and your information
@type : NetNode
@param : The node to be drawn
"""
x, y = node.get_cartesian_coordinate()
xc, yc = self.__center_of_widget
r, g, b = node.get_draw_info('color')
radius = node.get_draw_info('radius')
type = node.get_info('device_type')
x_gap = radius + 2
y_gap = 0
# draw group indication
if node.get_draw_info('group'):
x_gap += 5
if type in SQUARE_TYPES:
context.rectangle(xc + x - radius - 5,
yc - y - radius - 5,
2 * radius + 10,
2 * radius + 10)
else:
context.arc(xc + x, yc - y, radius + 5, 0, 2 * math.pi)
context.set_source_rgb(1.0, 1.0, 1.0)
context.fill_preserve()
if node.deep_search_child(self.__graph.get_main_node()):
context.set_source_rgb(0.0, 0.0, 0.0)
else:
context.set_source_rgb(0.1, 0.5, 1.0)
context.set_line_width(2)
context.stroke()
# draw over node
if node.get_draw_info('over'):
context.set_line_width(0)
if type in SQUARE_TYPES:
context.rectangle(xc + x - radius - 5,
yc - y - radius - 5,
2 * radius + 10,
2 * radius + 10)
else:
context.arc(xc + x, yc - y, radius + 5, 0, 2 * math.pi)
context.set_source_rgb(0.1, 0.5, 1.0)
context.fill_preserve()
context.stroke()
# draw node
if type in SQUARE_TYPES:
context.rectangle(xc + x - radius,
yc - y - radius,
2 * radius,
2 * radius)
else:
context.arc(xc + x, yc - y, radius, 0, 2 * math.pi)
# draw icons
if not self.__animating and self.__show_icon:
icons = list()
if type in ICON_DICT.keys():
icons.append(self.__icon.get_pixbuf(ICON_DICT[type]))
if node.get_info('filtered'):
icons.append(self.__icon.get_pixbuf('padlock'))
for icon in icons:
stride, data = get_pixels_for_cairo_image_surface(icon)
# Cairo documentation says that the correct way to obtain a
# legal stride value is using the function
# cairo.ImageSurface.format_stride_for_width().
# But this method is only available since cairo 1.6. So we are
# using the stride returned by
# get_pixels_for_cairo_image_surface() function.
surface = cairo.ImageSurface.create_for_data(data,
cairo.FORMAT_ARGB32,
icon.get_width(),
icon.get_height(),
stride)
context.set_source_surface(surface,
round(xc + x + x_gap),
round(yc - y + y_gap - 6))
context.paint()
x_gap += 13
# draw node text
context.set_source_rgb(r, g, b)
context.fill_preserve()
if node.get_draw_info('valid'):
context.set_source_rgb(0.0, 0.0, 0.0)
else:
context.set_source_rgb(0.1, 0.5, 1.0)
if not self.__animating and self.__show_address:
context.set_font_size(8)
context.move_to(round(xc + x + x_gap),
round(yc - y + y_gap + 4))
hostname = node.get_info('hostname')
if hostname is not None and self.__show_hostname:
context.show_text(hostname)
elif node.get_info('ip') is not None:
context.show_text(node.get_info('ip'))
context.set_line_width(1)
context.stroke()
def __check_fisheye_ring(self):
"""
"""
if self.__fisheye_ring >= self.__number_of_rings:
self.__fisheye_ring = self.__number_of_rings - 1
def __set_number_of_rings(self, value):
"""
"""
self.__number_of_rings = value
self.__check_fisheye_ring()
def __fisheye_function(self, ring):
"""
"""
distance = abs(self.__fisheye_ring - ring)
level_of_detail = self.__ring_gap * self.__fisheye_interest
spread_distance = distance - distance * self.__fisheye_spread
value = level_of_detail / (spread_distance + 1)
if value < self.__min_ring_gap:
value = self.__min_ring_gap
return value
@graph_is_not_empty
@not_is_in_animation
def __update_nodes_positions(self):
"""
"""
for node in self.__sorted_nodes:
if node.get_draw_info('grouped'):
# deep group check
group = node.get_draw_info('group_node')
while group.get_draw_info('group_node') is not None:
group = group.get_draw_info('group_node')
ring = group.get_draw_info('ring')
node.set_coordinate_radius(self.__calc_radius(ring))
else:
ring = node.get_draw_info('ring')
node.set_coordinate_radius(self.__calc_radius(ring))
@graph_is_not_empty
def __get_node_by_coordinate(self, point):
"""
"""
xc, yc = self.__center_of_widget
for node in self.__graph.get_nodes():
if node.get_draw_info('grouped'):
continue
ax, ay = self.__translation
xn, yn = node.get_cartesian_coordinate()
center = (xc + xn * self.__scale + ax, yc - yn * self.__scale - ay)
radius = node.get_draw_info('radius') * self.__scale
type = node.get_info('device_type')
if type in SQUARE_TYPES:
if geometry.is_in_square(point, radius, center):
return node, center
else:
if geometry.is_in_circle(point, radius, center):
return node, center
return None
def __calc_radius(self, ring):
"""
"""
if self.__fisheye:
radius = 0
while ring > 0:
radius += self.__fisheye_function(ring)
ring -= 1
else:
radius = ring * self.__ring_gap
return radius
@graph_is_not_empty
def __arrange_nodes(self):
"""
"""
new_nodes = set([self.__graph.get_main_node()])
old_nodes = set()
number_of_needed_rings = 1
ring = 0
# while new nodes were found
while len(new_nodes) > 0:
tmp_nodes = set()
# for each new nodes
for node in new_nodes:
old_nodes.add(node)
# set ring location
node.set_draw_info({'ring': ring})
# check group constraints
if (node.get_draw_info('group') or
node.get_draw_info('grouped')):
children = node.get_draw_info('children')
else:
# getting connections and fixing multiple fathers
children = set()
for child in self.__graph.get_node_connections(node):
if child in old_nodes or child in new_nodes:
continue
if child.get_draw_info('grouped'):
continue
children.add(child)
# setting father foreign
for child in children:
child.set_draw_info({'father': node})
node.set_draw_info(
{'children': misc.sort_children(children, node)})
tmp_nodes.update(children)
# check group influence in number of rings
for node in tmp_nodes:
if not node.get_draw_info('grouped'):
number_of_needed_rings += 1
break
# update new nodes set
new_nodes.update(tmp_nodes)
new_nodes.difference_update(old_nodes)
ring += 1
self.__set_number_of_rings(number_of_needed_rings)
def __weighted_layout(self):
"""
"""
# calculating the space needed by each node
self.__graph.get_main_node().set_draw_info({'range': (0, 360)})
new_nodes = set([self.__graph.get_main_node()])
self.__graph.get_main_node().calc_needed_space()
while len(new_nodes) > 0:
node = new_nodes.pop()
# add only no grouped nodes
children = set()
for child in node.get_draw_info('children'):
if not child.get_draw_info('grouped'):
children.add(child)
new_nodes.add(child)
if len(children) > 0:
min, max = node.get_draw_info('range')
node_total = max - min
children_need = node.get_draw_info('children_need')
for child in children:
child_need = child.get_draw_info('space_need')
child_total = node_total * child_need / children_need
theta = child_total / 2 + min + self.__rotate
child.set_coordinate_theta(theta)
child.set_draw_info({'range': (min, min + child_total)})
min += child_total
def __symmetric_layout(self):
"""
"""
self.__graph.get_main_node().set_draw_info({'range': (0, 360)})
new_nodes = set([self.__graph.get_main_node()])
while len(new_nodes) > 0:
node = new_nodes.pop()
# add only no grouped nodes
children = set()
for child in node.get_draw_info('children'):
if not child.get_draw_info('grouped'):
children.add(child)
new_nodes.add(child)
if len(children) > 0:
min, max = node.get_draw_info('range')
factor = float(max - min) / len(children)
for child in children:
theta = factor / 2 + min + self.__rotate
child.set_coordinate_theta(theta)
child.set_draw_info({'range': (min, min + factor)})
min += factor
@graph_is_not_empty
def __calc_layout(self, reference):
"""
"""
# selecting layout algorithm
if self.__layout == LAYOUT_SYMMETRIC:
self.__symmetric_layout()
elif self.__layout == LAYOUT_WEIGHTED:
self.__weighted_layout()
# rotating focus' children to keep orientation
if reference is not None:
father, angle = reference
theta = father.get_coordinate_theta()
factor = theta - angle
for node in self.__graph.get_nodes():
theta = node.get_coordinate_theta()
node.set_coordinate_theta(theta - factor)
a, b = node.get_draw_info('range')
node.set_draw_info({'range': (a - factor, b - factor)})
@graph_is_not_empty
def __calc_node_positions(self, reference=None):
"""
"""
# set nodes' hierarchy
self.__arrange_nodes()
self.calc_sorted_nodes()
# set nodes' coordinate radius
for node in self.__graph.get_nodes():
ring = node.get_draw_info('ring')
node.set_coordinate_radius(self.__calc_radius(ring))
# set nodes' coordinate theta
self.__calc_layout(reference)
def __calc_interpolation(self, focus):
"""
"""
old_main_node = self.__graph.get_main_node()
self.__graph.set_main_node(focus)
# getting initial coordinates
for node in self.__graph.get_nodes():
if self.__interpolation == INTERPOLATION_POLAR:
coordinate = node.get_polar_coordinate()
elif self.__interpolation == INTERPOLATION_CARTESIAN:
coordinate = node.get_cartesian_coordinate()
node.set_draw_info({'start_coordinate': coordinate})
father = focus.get_draw_info('father')
# calculate nodes positions (and father orientation)?
if father is not None:
xa, ya = father.get_cartesian_coordinate()
xb, yb = focus.get_cartesian_coordinate()
angle = math.atan2(yb - ya, xb - xa)
angle = math.degrees(angle)
self.__calc_node_positions((father, 180 + angle))
else:
self.__calc_node_positions()
# steps for slow-in/slow-out animation
steps = list(range(self.__number_of_frames))
for i in range(len(steps) // 2):
steps[self.__number_of_frames - 1 - i] = steps[i]
# normalize angles and calculate interpolated points
for node in self.__sorted_nodes:
l2di = Linear2DInterpolator()
# change grouped nodes coordinate
if node.get_draw_info('grouped'):
group_node = node.get_draw_info('group_node')
a, b = group_node.get_draw_info('final_coordinate')
if self.__interpolation == INTERPOLATION_POLAR:
node.set_polar_coordinate(a, b)
elif self.__interpolation == INTERPOLATION_CARTESIAN:
node.set_cartesian_coordinate(a, b)
# change interpolation method
if self.__interpolation == INTERPOLATION_POLAR:
coordinate = node.get_polar_coordinate()
node.set_draw_info({'final_coordinate': coordinate})
# adjusting polar coordinates
ri, ti = node.get_draw_info('start_coordinate')
rf, tf = node.get_draw_info('final_coordinate')
# normalization [0, 360]
ti = geometry.normalize_angle(ti)
tf = geometry.normalize_angle(tf)
# against longest path
ti, tf = geometry.calculate_short_path(ti, tf)
# main node goes direct to center (no arc)
if node == self.__graph.get_main_node():
tf = ti
# old main node goes direct to new position (no arc)
if node == old_main_node:
ti = tf
node.set_draw_info({'start_coordinate': (ri, ti)})
node.set_draw_info({'final_coordinate': (rf, tf)})
elif self.__interpolation == INTERPOLATION_CARTESIAN:
coordinate = node.get_cartesian_coordinate()
node.set_draw_info({'final_coordinate': coordinate})
# calculate interpolated points
ai, bi = node.get_draw_info('start_coordinate')
af, bf = node.get_draw_info('final_coordinate')
l2di.set_start_point(ai, bi)
l2di.set_final_point(af, bf)
if self.__interpolation_slow_in_out:
points = l2di.get_weighed_points(
self.__number_of_frames, steps)
else:
points = l2di.get_points(self.__number_of_frames)
node.set_draw_info({'interpolated_coordinate': points})
return True
def __livens_up(self, index=0):
"""
"""
if self.__graph is None:
# Bail out if the graph became empty during an animation.
self.__last_group_node = None
self.__animating = False
return False
# prepare interpolated points
if index == 0:
# prevent unnecessary animation
no_need_to_move = True
for node in self.__graph.get_nodes():
ai, bi = node.get_draw_info('start_coordinate')
af, bf = node.get_draw_info('final_coordinate')
start_c = round(ai), round(bi)
final_c = round(af), round(bf)
if start_c != final_c:
no_need_to_move = False
if no_need_to_move:
self.__animating = False
return False
# move all nodes for pass 'index'
for node in self.__graph.get_nodes():
a, b = node.get_draw_info('interpolated_coordinate')[index]
if self.__interpolation == INTERPOLATION_POLAR:
node.set_polar_coordinate(a, b)
elif self.__interpolation == INTERPOLATION_CARTESIAN:
node.set_cartesian_coordinate(a, b)
self.queue_draw()
# animation continue condition
if index < self.__number_of_frames - 1:
GLib.timeout_add(self.__animation_rate, # time to recall
self.__livens_up, # recursive call
index + 1) # next iteration
else:
self.__last_group_node = None
self.__animating = False
return False
@not_is_in_animation
def set_graph(self, graph):
"""
Set graph to be displayed in layout
@type : Graph
@param : Set the graph used in visualization
"""
if graph.get_number_of_nodes() > 0:
self.__graph = graph
self.__calc_node_positions()
self.queue_draw()
else:
self.__graph = None
def get_scanned_nodes(self):
"""
"""
nodes = list()
if self.__graph is None:
return nodes
for node in self.__graph.get_nodes():
if node.get_draw_info('scanned'):
nodes.append(node)
return nodes
def get_graph(self):
"""
"""
return self.__graph
def set_empty(self):
"""
"""
del(self.__graph)
self.__graph = None
self.queue_draw()
def get_rotation(self):
"""
"""
return self.__rotate
@graph_is_not_empty
def set_rotation(self, angle):
"""
"""
delta = angle - self.__rotate
self.__rotate = angle
for node in self.__graph.get_nodes():
theta = node.get_coordinate_theta()
node.set_coordinate_theta(theta + delta)
self.queue_draw()
def get_translation(self):
"""
"""
return self.__translation
@graph_is_not_empty
def set_translation(self, translation):
"""
"""
self.__translation = translation
self.queue_draw()
def is_empty(self):
"""
"""
return self.__graph is None
def is_in_animation(self):
"""
"""
return self.__animating
def calc_sorted_nodes(self):
"""
"""
self.__sorted_nodes = list(self.__graph.get_nodes())
self.__sorted_nodes.sort(key=lambda n: n.get_draw_info('ring'))
class NetNode(Node):
"""
Node class for radial network widget
"""
def __init__(self):
"""
"""
self.__draw_info = dict()
"""Hash with draw information"""
self.__coordinate = PolarCoordinate()
super(NetNode, self).__init__()
def get_host(self):
"""
Set the HostInfo that this node represents
"""
return self.get_data()
def set_host(self, host):
"""
Set the HostInfo that this node represents
"""
self.set_data(host)
def get_info(self, info):
"""Return various information extracted from the host set with
set_host."""
host = self.get_data()
if host is not None:
if info == "number_of_open_ports":
return host.get_port_count_by_states(["open"])
elif info == "vulnerability_score":
num_open_ports = host.get_port_count_by_states(["open"])
if num_open_ports < 3:
return 0
elif num_open_ports < 7:
return 1
else:
return 2
elif info == "addresses":
addresses = []
if host.ip is not None:
addresses.append(host.ip)
if host.ipv6 is not None:
addresses.append(host.ipv6)
if host.mac is not None:
addresses.append(host.mac)
return addresses
elif info == "ip":
for addr in (host.ip, host.ipv6, host.mac):
if addr:
return addr.get("addr")
elif info == "hostnames":
hostnames = []
for hostname in host.hostnames:
copy = {}
copy["name"] = hostname.get("hostname", "")
copy["type"] = hostname.get("hostname_type", "")
hostnames.append(copy)
return hostnames
elif info == "hostname":
return host.get_hostname()
elif info == "uptime":
if host.uptime.get("seconds") or host.uptime.get("lastboot"):
return host.uptime
elif info == "device_type":
osmatch = host.get_best_osmatch()
if osmatch is None:
return None
osclasses = osmatch['osclasses']
if len(osclasses) == 0:
return None
types = ["router", "wap", "switch", "firewall"]
for type in types:
if type in osclasses[0].get("type", "").lower():
return type
elif info == "os":
os = {}
# osmatches
if len(host.osmatches) > 0 and \
host.osmatches[0]["accuracy"] != "" and \
host.osmatches[0]["name"] != "":
if os is None:
os = {}
os["matches"] = host.osmatches
os["matches"][0]["db_line"] = 0 # not supported
os_classes = []
for osclass in host.osmatches[0]["osclasses"]:
os_class = {}
os_class["type"] = osclass.get("type", "")
os_class["vendor"] = osclass.get("vendor", "")
os_class["accuracy"] = osclass.get("accuracy", "")
os_class["os_family"] = osclass.get("osfamily", "")
os_class["os_gen"] = osclass.get("osgen", "")
os_classes.append(os_class)
os["classes"] = os_classes
# ports_used
if len(host.ports_used) > 0:
if os is None:
os = {}
os_portsused = []
for portused in host.ports_used:
os_portused = {}
os_portused["state"] = portused.get("state", "")
os_portused["protocol"] = portused.get("proto", "")
os_portused["id"] = int(portused.get("portid", "0"))
os_portsused.append(os_portused)
os["used_ports"] = os_portsused
if len(os) > 0:
os["fingerprint"] = ""
return os
elif info == "sequences":
# getting sequences information
sequences = {}
# If all fields are empty, we don't put it into the sequences
# list
if reduce(lambda x, y: x + y,
host.tcpsequence.values(), "") != "":
tcp = {}
if host.tcpsequence.get("index", "") != "":
tcp["index"] = int(host.tcpsequence["index"])
else:
tcp["index"] = 0
tcp["class"] = "" # not supported
tcp["values"] = host.tcpsequence.get(
"values", "").split(",")
tcp["difficulty"] = host.tcpsequence.get("difficulty", "")
sequences["tcp"] = tcp
if reduce(lambda x, y: x + y,
host.ipidsequence.values(), "") != "":
ip_id = {}
ip_id["class"] = host.ipidsequence.get("class", "")
ip_id["values"] = host.ipidsequence.get(
"values", "").split(",")
sequences["ip_id"] = ip_id
if reduce(lambda x, y: x + y,
host.tcptssequence.values(), "") != "":
tcp_ts = {}
tcp_ts["class"] = host.tcptssequence.get("class", "")
tcp_ts["values"] = host.tcptssequence.get(
"values", "").split(",")
sequences["tcp_ts"] = tcp_ts
return sequences
elif info == "filtered":
if (len(host.extraports) > 0 and
host.extraports[0]["state"] == "filtered"):
return True
else:
for port in host.ports:
if port["port_state"] == "filtered":
return True
return False
elif info == "ports":
ports = list()
for host_port in host.ports:
port = dict()
state = dict()
service = dict()
port["id"] = int(host_port.get("portid", ""))
port["protocol"] = host_port.get("protocol", "")
state["state"] = host_port.get("port_state", "")
state["reason"] = "" # not supported
state["reason_ttl"] = "" # not supported
state["reason_ip"] = "" # not supported
service["name"] = host_port.get("service_name", "")
service["conf"] = host_port.get("service_conf", "")
service["method"] = host_port.get("service_method", "")
service["version"] = host_port.get("service_version", "")
service["product"] = host_port.get("service_product", "")
service["extrainfo"] = host_port.get(
"service_extrainfo", "")
port["state"] = state
port["scripts"] = None # not supported
port["service"] = service
ports.append(port)
return ports
elif info == "extraports":
# extraports
all_extraports = list()
for extraport in host.extraports:
extraports = dict()
extraports["count"] = int(extraport.get("count", ""))
extraports["state"] = extraport.get("state", "")
extraports["reason"] = list() # not supported
extraports["all_reason"] = list() # not supported
all_extraports.append(extraports)
return all_extraports
elif info == "trace":
# getting traceroute information
if len(host.trace) > 0:
trace = {}
hops = []
for host_hop in host.trace.get("hops", []):
hop = {}
hop["ip"] = host_hop.get("ipaddr", "")
hop["ttl"] = int(host_hop.get("ttl", ""))
hop["rtt"] = host_hop.get("rtt", "")
hop["hostname"] = host_hop.get("host", "")
hops.append(hop)
trace["hops"] = hops
trace["port"] = host.trace.get("port", "")
trace["protocol"] = host.trace.get("proto", "")
return trace
else: # host is None
pass
return None
def get_coordinate_theta(self):
"""
"""
return self.__coordinate.get_theta()
def get_coordinate_radius(self):
"""
"""
return self.__coordinate.get_radius()
def set_coordinate_theta(self, value):
"""
"""
self.__coordinate.set_theta(value)
def set_coordinate_radius(self, value):
"""
"""
self.__coordinate.set_radius(value)
def set_polar_coordinate(self, r, t):
"""
Set polar coordinate
@type r: number
@param r: The radius of coordinate
@type t: number
@param t: The angle (theta) of coordinate in radians
"""
self.__coordinate.set_coordinate(r, t)
def get_polar_coordinate(self):
"""
Get cartesian coordinate
@rtype: tuple
@return: Cartesian coordinates (x, y)
"""
return self.__coordinate.get_coordinate()
def set_cartesian_coordinate(self, x, y):
"""
Set cartesian coordinate
"""
cartesian = CartesianCoordinate(x, y)
r, t = cartesian.to_polar()
self.set_polar_coordinate(r, math.degrees(t))
def get_cartesian_coordinate(self):
"""
Get cartesian coordinate
@rtype: tuple
@return: Cartesian coordinates (x, y)
"""
return self.__coordinate.to_cartesian()
def get_draw_info(self, info=None):
"""
Get draw information about node
@type : string
@param : Information name
@rtype: mixed
@return: The requested information
"""
if info is None:
return self.__draw_info
return self.__draw_info.get(info)
def set_draw_info(self, info):
"""
Set draw information
@type : dict
@param : Draw information dictionary
"""
for key in info:
self.__draw_info[key] = info[key]
def deep_search_child(self, node):
"""
"""
for child in self.get_draw_info('children'):
if child == node:
return True
elif child.deep_search_child(node):
return True
return False
def set_subtree_info(self, info):
"""
"""
for child in self.get_draw_info('children'):
child.set_draw_info(info)
if not child.get_draw_info('group'):
child.set_subtree_info(info)
def calc_needed_space(self):
"""
"""
number_of_children = len(self.get_draw_info('children'))
sum_angle = 0
own_angle = 0
if number_of_children > 0 and not self.get_draw_info('group'):
for child in self.get_draw_info('children'):
child.calc_needed_space()
sum_angle += child.get_draw_info('space_need')
distance = self.get_coordinate_radius()
size = self.get_draw_info('radius') * 2
own_angle = geometry.angle_from_object(distance, size)
self.set_draw_info({'children_need': sum_angle})
self.set_draw_info({'space_need': max(sum_angle, own_angle)})