1
0
mirror of https://github.com/nmap/nmap.git synced 2025-12-06 04:31:29 +00:00
Files
nmap/nping/ProbeMode.cc
henri b55ff2d68f Don't associate nsock logging info to a nspool.
Make current loglevel and current log callback global
to the library. Attaching them to the nsock pool doesn't
bring any benefit and prevents from logging activity in
code sections that don't have access to a pool (such as
proxy chain specification parsing).

Updated external calls and nsock tests accordingly.
2015-06-27 08:21:53 +00:00

2399 lines
102 KiB
C++

/***************************************************************************
* ProbeMode.cc -- Probe Mode is nping's default working mode. Basically, *
* it involves sending the packets that the user requested at regular *
* intervals and capturing responses from the wire. *
* *
***********************IMPORTANT NMAP LICENSE TERMS************************
* *
* The Nmap Security Scanner is (C) 1996-2015 Insecure.Com LLC. Nmap is *
* also a registered trademark of Insecure.Com LLC. This program is free *
* software; you may redistribute and/or modify it under the terms of the *
* GNU General Public License as published by the Free Software *
* Foundation; Version 2 ("GPL"), BUT ONLY WITH ALL OF THE CLARIFICATIONS *
* AND EXCEPTIONS DESCRIBED HEREIN. This guarantees your right to use, *
* modify, and redistribute this software under certain conditions. If *
* you wish to embed Nmap technology into proprietary software, we sell *
* alternative licenses (contact sales@nmap.com). Dozens of software *
* vendors already license Nmap technology such as host discovery, port *
* scanning, OS detection, version detection, and the Nmap Scripting *
* Engine. *
* *
* Note that the GPL places important restrictions on "derivative works", *
* yet it does not provide a detailed definition of that term. To avoid *
* misunderstandings, we interpret that term as broadly as copyright law *
* allows. For example, we consider an application to constitute a *
* derivative work for the purpose of this license if it does any of the *
* following with any software or content covered by this license *
* ("Covered Software"): *
* *
* o Integrates source code from Covered Software. *
* *
* o Reads or includes copyrighted data files, such as Nmap's nmap-os-db *
* or nmap-service-probes. *
* *
* o Is designed specifically to execute Covered Software and parse the *
* results (as opposed to typical shell or execution-menu apps, which will *
* execute anything you tell them to). *
* *
* o Includes Covered Software in a proprietary executable installer. The *
* installers produced by InstallShield are an example of this. Including *
* Nmap with other software in compressed or archival form does not *
* trigger this provision, provided appropriate open source decompression *
* or de-archiving software is widely available for no charge. For the *
* purposes of this license, an installer is considered to include Covered *
* Software even if it actually retrieves a copy of Covered Software from *
* another source during runtime (such as by downloading it from the *
* Internet). *
* *
* o Links (statically or dynamically) to a library which does any of the *
* above. *
* *
* o Executes a helper program, module, or script to do any of the above. *
* *
* This list is not exclusive, but is meant to clarify our interpretation *
* of derived works with some common examples. Other people may interpret *
* the plain GPL differently, so we consider this a special exception to *
* the GPL that we apply to Covered Software. Works which meet any of *
* these conditions must conform to all of the terms of this license, *
* particularly including the GPL Section 3 requirements of providing *
* source code and allowing free redistribution of the work as a whole. *
* *
* As another special exception to the GPL terms, Insecure.Com LLC grants *
* permission to link the code of this program with any version of the *
* OpenSSL library which is distributed under a license identical to that *
* listed in the included docs/licenses/OpenSSL.txt file, and distribute *
* linked combinations including the two. *
* *
* Any redistribution of Covered Software, including any derived works, *
* must obey and carry forward all of the terms of this license, including *
* obeying all GPL rules and restrictions. For example, source code of *
* the whole work must be provided and free redistribution must be *
* allowed. All GPL references to "this License", are to be treated as *
* including the terms and conditions of this license text as well. *
* *
* Because this license imposes special exceptions to the GPL, Covered *
* Work may not be combined (even as part of a larger work) with plain GPL *
* software. The terms, conditions, and exceptions of this license must *
* be included as well. This license is incompatible with some other open *
* source licenses as well. In some cases we can relicense portions of *
* Nmap or grant special permissions to use it in other open source *
* software. Please contact fyodor@nmap.org with any such requests. *
* Similarly, we don't incorporate incompatible open source software into *
* Covered Software without special permission from the copyright holders. *
* *
* If you have any questions about the licensing restrictions on using *
* Nmap in other works, are happy to help. As mentioned above, we also *
* offer alternative license to integrate Nmap into proprietary *
* applications and appliances. These contracts have been sold to dozens *
* of software vendors, and generally include a perpetual license as well *
* as providing for priority support and updates. They also fund the *
* continued development of Nmap. Please email sales@nmap.com for further *
* information. *
* *
* If you have received a written license agreement or contract for *
* Covered Software stating terms other than these, you may choose to use *
* and redistribute Covered Software under those terms instead of these. *
* *
* Source is provided to this software because we believe users have a *
* right to know exactly what a program is going to do before they run it. *
* This also allows you to audit the software for security holes. *
* *
* Source code also allows you to port Nmap to new platforms, fix bugs, *
* and add new features. You are highly encouraged to send your changes *
* to the dev@nmap.org mailing list for possible incorporation into the *
* main distribution. By sending these changes to Fyodor or one of the *
* Insecure.Org development mailing lists, or checking them into the Nmap *
* source code repository, it is understood (unless you specify otherwise) *
* that you are offering the Nmap Project (Insecure.Com LLC) the *
* unlimited, non-exclusive right to reuse, modify, and relicense the *
* code. Nmap will always be available Open Source, but this is important *
* because the inability to relicense code has caused devastating problems *
* for other Free Software projects (such as KDE and NASM). We also *
* occasionally relicense the code to third parties as discussed above. *
* If you wish to specify special license conditions of your *
* contributions, just say so when you send them. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Nmap *
* license file for more details (it's in a COPYING file included with *
* Nmap, and also available from https://svn.nmap.org/nmap/COPYING) *
* *
***************************************************************************/
#include "nping.h"
#include "ProbeMode.h"
#include <vector>
#include "nsock.h"
#include "output.h"
#include "NpingOps.h"
extern NpingOps o;
ProbeMode::ProbeMode() {
this->reset();
} /* End of ProbeMode constructor */
ProbeMode::~ProbeMode() {
} /* End of ProbeMode destructor */
/** Sets every attribute to its default value- */
void ProbeMode::reset() {
this->nsock_init=false;
} /* End of reset() */
/** Sets up the internal nsock pool and the nsock trace level */
int ProbeMode::init_nsock(){
struct timeval now;
if( nsock_init==false ){
/* Create a new nsock pool */
if ((nsp = nsock_pool_new(NULL)) == NULL)
nping_fatal(QT_3, "Failed to create new pool. QUITTING.\n");
nsock_pool_set_device(nsp, o.getDevice());
/* Allow broadcast addresses */
nsock_pool_set_broadcast(nsp, 1);
/* Set nsock trace level */
gettimeofday(&now, NULL);
if( o.getDebugging() == DBG_5)
nsock_set_loglevel(NSOCK_LOG_INFO);
else if( o.getDebugging() > DBG_5 )
nsock_set_loglevel(NSOCK_LOG_DBG_ALL);
/* Flag it as already initialized so we don't do it again */
nsock_init=true;
}
return OP_SUCCESS;
} /* End of init() */
/** Cleans up the internal nsock pool and any other internal data that
* needs to be taken care of before destroying the object. */
int ProbeMode::cleanup(){
nsock_pool_delete(this->nsp);
return OP_SUCCESS;
} /* End of cleanup() */
/** Returns the internal nsock pool.
* @warning the caller must ensure that init_nsock() has been called before
* calling this method; otherwise, it will fatal() */
nsock_pool ProbeMode::getNsockPool(){
if( this->nsock_init==false)
nping_fatal(QT_3, "getNsockPool() called before init_nsock(). Please report a bug.");
return this->nsp;
} /* End of getNsockPool() */
/** This function handles regular ping mode. Basically it handles both
* unprivileged modes (TCP_CONNECT and UDP_UNPRIV) and raw packet modes
* (TCP, UDP, ICMP, ARP). This function is where the loops that iterate
* over target hosts and target ports are located. It uses the nsock lib
* to schedule transmissions. The actual Tx and Rx is done inside the nsock
* event handlers, here we just schedule them, take care of the timers,
* set up pcap and the bpf filter, etc. */
int ProbeMode::start(){
int rc;
int p=0, pc=-1; /**< Indexes for ports count */
u32 c=0; /**< Index for packet count */
u32 zero=0; /**< Empty payload */
u8 pktinfobuffer[512+1]; /**< Used in ippackethdrinfo() calls */
u8 pkt[MAX_IP_PACKET_LEN]; /**< Holds packets returned by fillpacket */
int pktLen=0; /**< Length of current packet */
NpingTarget *target=NULL; /**< Current target */
u16 *targetPorts=NULL; /**< Pointer to array of target ports */
int numTargetPorts=0; /**< Total number of target ports */
u16 currentPort=0; /**< Current target port */
char *filterstring; /**< Stores BFP filter spec string */
int rawipsd=-1; /**< Descriptor for raw IP socket */
enum nsock_loopstatus loopret; /**< Stores nsock_loop returned status */
nsock_iod pcap_nsi; /**< Stores Pcap IOD */
u32 packetno=0; /**< Total packet count */
bool first_time=true; /**< First time we run the loop? */
char pcapdev[128]; /**< Device name passed to pcap_open_live */
#define MX_PKT 1024 /**< Packet structs we keep simultaneously*/
sendpkt_t pkts2send[MX_PKT]; /**< We have a race condition here but the
* problem is not trivial to solve because we cannot create a sendpkt_t
* struct for every probe we send. That could be alright in most cases but
* not when targeting large networks or when doing flooding. The problem here
* is that we may need access to specific sendpkt_t vars inside the nsock
* event handlers but as some operations are asynchronous, we may exhaust
* the current array of sendpkt_t structs and overwrite some positions
* that contain data that has not been read yet. Anyway, this bug should not
* happen when using Nping for normal purposes. As long as you don't choose
* to ping a 100 million hosts with an inter-probe delay of 1ms, you should be
* fine. For more info, write to luis.mgarc@gmail.com or post a message to the
* nmap-dev mailing list. */
/* Some safe zero initializations */
memset(pktinfobuffer, 0, 512+1);
memset(pkt, 0, MAX_IP_PACKET_LEN);
memset(&pcap_nsi, 0, sizeof(pcap_nsi));
memset(pkts2send, 0, MX_PKT * sizeof(sendpkt_t));
/* Get array of target ports */
targetPorts = o.getTargetPorts( &numTargetPorts );
/* Set up nsock */
this->init_nsock();
switch( o.getMode() ){
/***************************************************************************/
/** TCP CONNECT MODE **/
/***************************************************************************/
case TCP_CONNECT:
o.stats.startClocks();
for( c=0; c < o.getPacketCount(); c++){ /* Do requested times */
o.targets.rewind();
for (p=0; p < numTargetPorts; p++){ /* Iterate through all destination ports */
o.targets.rewind();
while( (target=o.targets.getNextTarget()) != NULL ){
/* Store relevant info so we can pass it to the handler */
pc=(pc+1)%MX_PKT;
pkts2send[pc].type=PKT_TYPE_TCP_CONNECT;
pkts2send[pc].target=target;
pkts2send[pc].dstport=targetPorts[p];
/* Schedule a TCP Connect attempt */
if( first_time ){
nsock_timer_create(nsp, tcpconnect_event_handler, 1, &pkts2send[pc]);
first_time=false;
loopret=nsock_loop(nsp, 2);
if (loopret == NSOCK_LOOP_ERROR)
nping_fatal(QT_3, "Unexpected nsock_loop error.\n");
}else{
nsock_timer_create(nsp, tcpconnect_event_handler, o.getDelay()+1, &pkts2send[pc]);
loopret=nsock_loop(nsp, o.getDelay()+1);
if (loopret == NSOCK_LOOP_ERROR)
nping_fatal(QT_3, "Unexpected nsock_loop error.\n");
}
}
}
}
o.stats.stopTxClock();
/* If there are some events pending, we'll wait for DEFAULT_WAIT_AFTER_PROBES ms,
* otherwise nsock_loop() will return immediately */
loopret=nsock_loop(nsp, DEFAULT_WAIT_AFTER_PROBES);
if (loopret == NSOCK_LOOP_ERROR)
nping_fatal(QT_3, "Unexpected nsock_loop error.\n");
o.stats.stopRxClock();
return OP_SUCCESS;
break; /* case TCP_CONNECT */
/***************************************************************************/
/** UDP UNPRIVILEGED MODE **/
/***************************************************************************/
case UDP_UNPRIV:
o.stats.startClocks();
for( c=0; c < o.getPacketCount(); c++){ /* Do requested times */
o.targets.rewind();
for (p=0; p < numTargetPorts; p++){ /* Iterate through all destination ports */
o.targets.rewind();
while( (target=o.targets.getNextTarget()) != NULL ){
/* Store relevant info so we can pass it to the handler */
pc=(pc+1)%MX_PKT;
pkts2send[pc].type=PKT_TYPE_UDP_NORMAL;
pkts2send[pc].target=target;
pkts2send[pc].dstport=targetPorts[p];
if(o.issetPayloadBuffer() ){
pkts2send[pc].pkt=o.getPayloadBuffer();
pkts2send[pc].pktLen=o.getPayloadLen();
}else{
/* We send 4 bytes of value 0 because nsock does not let us send empty UDP packets */
pkts2send[pc].pkt=(u8*)&zero;
pkts2send[pc].pktLen=4;
/* TODO: At some point we want to support David's custom UDP payloads here*/
}
/* Schedule a UDP attempt */
if( first_time ){
nsock_timer_create(nsp, udpunpriv_event_handler, 1, &pkts2send[pc]);
first_time=false;
loopret=nsock_loop(nsp, 2);
if (loopret == NSOCK_LOOP_ERROR)
nping_fatal(QT_3, "Unexpected nsock_loop error.\n");
}else{
nsock_timer_create(nsp, udpunpriv_event_handler, o.getDelay(), &pkts2send[pc]);
loopret=nsock_loop(nsp, o.getDelay());
if (loopret == NSOCK_LOOP_ERROR)
nping_fatal(QT_3, "Unexpected nsock_loop error.\n");
}
}
}
}
o.stats.stopTxClock();
/* If there are some events pending, we'll wait for DEFAULT_WAIT_AFTER_PROBES ms,
* otherwise nsock_loop() will return immediately */
if(!o.disablePacketCapture()){
loopret=nsock_loop(nsp, DEFAULT_WAIT_AFTER_PROBES);
if (loopret == NSOCK_LOOP_ERROR)
nping_fatal(QT_3, "Unexpected nsock_loop error.\n");
}
o.stats.stopRxClock();
return OP_SUCCESS;
break; /* case UDP_UNPRIV */
/***************************************************************************/
/** TCP/UDP/ICMP/ARP MODES **/
/***************************************************************************/
case TCP:
case UDP:
case ICMP:
case ARP:
if( o.getMode()!=ARP && o.sendEth()==false ){
/* Get socket descriptor. No need for it in ARP since we send at eth level */
if ((rawipsd = obtainRawSocket()) < 0 )
nping_fatal(QT_3,"Couldn't acquire raw socket. Are you root?");
}
/* Check if we have enough information to get the party started */
if((o.getMode()==TCP || o.getMode()==UDP) && targetPorts==NULL)
nping_fatal(QT_3, "normalProbeMode(): NpingOps does not contain correct target ports\n");
/* Set up libpcap */
if(!o.disablePacketCapture()){
/* Create new IOD for pcap */
if ((pcap_nsi = nsock_iod_new(nsp, NULL)) == NULL)
nping_fatal(QT_3, "Failed to create new nsock_iod. QUITTING.\n");
/* Open pcap */
filterstring=getBPFFilterString();
nping_print(DBG_2,"Opening pcap device %s", o.getDevice() );
#ifdef WIN32
/* Nping normally uses device names obtained through dnet for interfaces,
* but Pcap has its own naming system. So the conversion is done here */
if (!DnetName2PcapName(o.getDevice(), pcapdev, sizeof(pcapdev))) {
/* Oh crap -- couldn't find the corresponding dev apparently.
* Let's just go with what we have then ... */
Strncpy(pcapdev, o.getDevice(), sizeof(pcapdev));
}
#else
Strncpy(pcapdev, o.getDevice(), sizeof(pcapdev));
#endif
rc = nsock_pcap_open(nsp, pcap_nsi, pcapdev, 8192,
(o.spoofSource()) ? 1 : 0, filterstring);
if (rc)
nping_fatal(QT_3, "Error opening capture device %s\n", o.getDevice());
nping_print(DBG_2,"Pcap device %s open successfully", o.getDevice());
}
/* Ready? Go! */
o.stats.startClocks();
switch ( o.getMode() ){
/* Modes in which we need to iterate over target ports */
case TCP:
case UDP:
/* Do user requested times */
for( c=0; c < o.getPacketCount(); c++){
o.targets.rewind();
o.setCurrentRound( o.issetTTL() ? ((c%(256-o.getTTL()))+o.getTTL()) : ((c%255)+1 ) ); /* Used in traceroute mode */
/* Iterate through all destination ports */
for (p=0; p < numTargetPorts; p++){
o.targets.rewind();
/* Iterate trough all target IP addresses */
while( (target=o.targets.getNextTarget()) != NULL ){
currentPort=targetPorts[p];
if ( fillPacket( target, currentPort, pkt, MAX_IP_PACKET_LEN, &pktLen, rawipsd ) != OP_SUCCESS ){
nping_fatal(QT_3, "normalProbeMode(): Error in packet creation");
}
/* Safe checks */
if (pkt == NULL || pktLen <=0)
nping_fatal(QT_3, "normalProbeMode(): Invalid packet returned by fillPacket() ");
/* Store relevant info so we can pass it to the handler */
pc=(pc+1)%MX_PKT;
pkts2send[pc].type = (o.getMode()==TCP) ? PKT_TYPE_TCP_RAW : PKT_TYPE_UDP_RAW;
pkts2send[pc].pkt = pkt;
pkts2send[pc].target=target;
pkts2send[pc].pktLen = pktLen;
pkts2send[pc].rawfd = rawipsd;
pkts2send[pc].seq = ++packetno;
pkts2send[pc].dstport=currentPort;
/* Tell nsock we expect one reply. Actually we schedule 2 pcap events just in case
* we get more than one response. */
if(!o.disablePacketCapture()){
nsock_pcap_read_packet(nsp, pcap_nsi, nping_event_handler, o.getDelay(), NULL);
nsock_pcap_read_packet(nsp, pcap_nsi, nping_event_handler, o.getDelay(), NULL);
}
/* Let nsock handle probe transmission and inter-probe delay */
if( first_time ){
nsock_timer_create(nsp, nping_event_handler, 1, &pkts2send[pc]);
first_time=false;
loopret=nsock_loop(nsp, 2);
if (loopret == NSOCK_LOOP_ERROR)
nping_fatal(QT_3, "Unexpected nsock_loop error.\n");
}else{
nsock_timer_create(nsp, nping_event_handler, o.getDelay(), &pkts2send[pc]);
loopret=nsock_loop(nsp, o.getDelay()+1);
if (loopret == NSOCK_LOOP_ERROR)
nping_fatal(QT_3, "Unexpected nsock_loop error.\n");
}
}
}
}
break; /* Nested case UDP/TCP */
/* Modes in which we DO NOT need to iterate over target ports */
case ICMP:
case ARP:
/* Do user requested times */
for( c=0; c < o.getPacketCount(); c++){
o.targets.rewind();
o.setCurrentRound( o.issetTTL() ? ((c%(256-o.getTTL()))+o.getTTL()) : ((c%255)+1 ) ); /* Used in traceroute mode */
/* Iterate trough all target IP addresses */
while( (target=o.targets.getNextTarget()) != NULL ){
if ( fillPacket( target, 0, pkt, MAX_IP_PACKET_LEN, &pktLen, rawipsd ) != OP_SUCCESS )
nping_fatal(QT_3, "normalProbeMode(): Error in packet creation");
if (pkt == NULL || pktLen <=0)
nping_fatal(QT_3, "normalProbeMode(): Error packet returned by createPacket() ");
/* Store relevant info so we can pass it to the handler */
pc=(pc+1)%MX_PKT;
pkts2send[pc].type = (o.getMode()==ICMP) ? PKT_TYPE_ICMP_RAW : PKT_TYPE_ARP_RAW;
pkts2send[pc].pkt = pkt;
pkts2send[pc].pktLen = pktLen;
pkts2send[pc].target=target;
pkts2send[pc].rawfd = rawipsd;
pkts2send[pc].seq = ++packetno;
/* Tell nsock we expect one reply. Actually we schedule 2 pcap events just in case
* we get more than one response. */
if(!o.disablePacketCapture()){
nsock_pcap_read_packet(nsp, pcap_nsi, nping_event_handler, o.getDelay(), NULL);
nsock_pcap_read_packet(nsp, pcap_nsi, nping_event_handler, o.getDelay(), NULL);
}
/* Let nsock handle probe transmission and inter-probe delay */
if( first_time ){
nsock_timer_create(nsp, nping_event_handler, 1, &pkts2send[pc]);
first_time=false;
loopret=nsock_loop(nsp, 2);
if (loopret == NSOCK_LOOP_ERROR)
nping_fatal(QT_3, "Unexpected nsock_loop error.\n");
}else{
nsock_timer_create(nsp, nping_event_handler, o.getDelay(), &pkts2send[pc]);
loopret=nsock_loop(nsp, o.getDelay()+1);
if (loopret == NSOCK_LOOP_ERROR)
nping_fatal(QT_3, "Unexpected nsock_loop error.\n");
}
}
}
break; /* Nested case ICMP/ARP */
} /* End of nested switch */
o.stats.stopTxClock();
if(!o.disablePacketCapture()){
nsock_pcap_read_packet(nsp, pcap_nsi, nping_event_handler, DEFAULT_WAIT_AFTER_PROBES, NULL);
loopret=nsock_loop(nsp, DEFAULT_WAIT_AFTER_PROBES);
if (loopret == NSOCK_LOOP_ERROR)
nping_fatal(QT_3, "Unexpected nsock_loop error.\n");
o.stats.stopRxClock();
}
/* Close opened descriptors */
if(rawipsd>=0)
close(rawipsd);
break; /* case TCP || case UDP || case ICMP || case ARP */
default:
nping_fatal(QT_3, "normalProbeMode(): Wrong mode. Please report this bug.");
break;
} /* End of main switch */
return OP_SUCCESS;
} /* End of start() */
/** Creates buffer suitable to be passed to a sendto() call. The buffer
* represents a raw network packet. The specific protocols are obtained from
* the information stored in "NpingOps o" object. For example, if o.getMode()
* returns TCP and o.ipv4() is true, then an IPv4-TCP packet will be generated
* and stored in the supplied buffer.
* @param target should contain a valid target with an IP that matches
* NpingOps::af() returned value.
* @param port is the destination port number. It is only necessary in TCP and
* UDP modes. You can safely pass a dummy value in ICMP and ARP modes.
* @param buff should point to a buffer where the generated packet can be stored.
* @param bufflen should be the size of the supplied buffer. This function will
* never write more than "bufflen" bytes to the buffer.
* @param filledlen will be set to the amount of bytes actually written into
* the buffer.
* @param rawfd is the raw socket descriptor that will be used to send the
* packet. This is only necessary when sending IPv6 packets at raw TCP level
* because some IPv6 options like hop limit are tuned using calls to
* setsockopt() */
int ProbeMode::fillPacket(NpingTarget *target, u16 port, u8 *buff, int bufflen, int *filledlen, int rawfd){
EthernetHeader e; /* Used when sending at raw Ethernet level. */
u8 *pnt=buff; /* Aux pointer to keep track of user supplied "buff". */
int pntlen=bufflen; /* Aux counter to store how many bytes we have left. */
int final_len=0;
bool eth_included=false;
if(target==NULL || buff==NULL || bufflen<=0 || filledlen==NULL)
return OP_FAILURE;
else
nping_print(DBG_4, "fillPacket(target=%p, port=%d, buff=%p, bufflen=%d, filledlen=%p rawfd=%d)", target, port, buff, bufflen, filledlen, rawfd);
/* If o.sendEth() is true that means we need to send packets at raw Ethernet
* level (we are probably running on windows or user requested that explicitly.
* Ethernet frames that carry ARP packets have special requirements (e.g. some
* of them are sent to a FF:FF:FF:FF:FF:FF broadcast address). That's why we
* don't create Ethernet frames here when ARP is used. Function fillPacketARP()
* takes care of that already. */
if(o.sendEth() && o.getMode()!=ARP){
e.setNextElement( NULL );
if( buff==NULL || filledlen==NULL)
nping_fatal(QT_3,"fillPacketARP(): NULL pointer supplied.");
/* Source MAC Address */
if( o.issetSourceMAC() )
e.setSrcMAC( o.getSourceMAC() );
else{
if( target->getSrcMACAddress() )
e.setSrcMAC( (u8 *)target->getSrcMACAddress() );
else
nping_fatal(QT_3, "fillPacket(): Cannot determine Source MAC address.");
}
/* Destination MAC Address */
if( o.issetDestMAC() )
e.setDstMAC( o.getDestMAC() );
else{
if( target->getNextHopMACAddress() )
e.setDstMAC( (u8 *)target->getNextHopMACAddress() );
else
nping_fatal(QT_3, "fillPacket(): Cannot determine Next Hop MAC address.");
}
/* Ethertype value */
if( o.issetEtherType() )
e.setEtherType( o.getEtherType() );
else{
if( o.getIPVersion() == IP_VERSION_4 )
e.setEtherType(ETHTYPE_IPV4);
else if ( o.getIPVersion() == IP_VERSION_6 )
e.setEtherType(ETHTYPE_IPV6);
else
nping_fatal(QT_3, "Bug in fillPacket() and NpingOps::ipversion");
}
/* Write the ethernet header to the beginning of the original buffer */
e.dumpToBinaryBuffer(buff, 14);
/* Move this pointer so the fillPacketXXXX() functions start from the
* right byte. */
pnt+=14;
pntlen-=14;
eth_included=true;
}
switch( o.getMode() ){
case TCP:
fillPacketTCP(target, port, pnt, pntlen, &final_len, rawfd);
break;
case UDP:
fillPacketUDP(target, port, pnt, pntlen, &final_len, rawfd);
break;
case ICMP:
fillPacketICMP(target, pnt, pntlen, &final_len, rawfd);
break;
case ARP: /* ARP builds its own Ethernet header inside fillPacketARP() */
fillPacketARP(target, pnt, pntlen, &final_len, rawfd);
break;
default:
nping_fatal(QT_3, "Bug in fillPacket() and NpingOps::getMode()");
break;
}
if( eth_included )
final_len+=14;
*filledlen=final_len;
return OP_SUCCESS;
} /* End of createPacket() */
/** Fills an IPv4Header object with information obtained from the NpingOps
* class.
* @return OP_SUCCESS on success and fatal()s in case of failure. */
int ProbeMode::createIPv4(IPv4Header *i, PacketElement *next_element, const char *next_proto, NpingTarget *target){
if( i==NULL || next_proto==NULL || target==NULL)
nping_fatal(QT_3,"createIPv4(): NULL pointer supplied.");
i->setNextElement( next_element ); /* Set datagram payload */
i->setDestinationAddress( target->getIPv4Address() ); /* Destination IP */
i->setSourceAddress( o.spoofSource() ? o.getIPv4SourceAddress() : target->getIPv4SourceAddress()); /* Source IP */
i->setTOS( o.getTOS() ); /* Type of service */
i->setIdentification( o.getIdentification() ); /* Identification */
i->setNextProto(next_proto);
/* Time to live */
if(o.issetTraceroute()){
i->setTTL( o.getCurrentRound() );
}else{
i->setTTL( o.getTTL() );
}
/* Flags */
if( o.issetMF() && o.getMF() == true )
i->setMF();
if( o.issetDF() && o.getDF() == true )
i->setDF();
/* IP Options */
if( o.issetIPOptions() == true )
i->setOpts( o.getIPOptions() );
i->setTotalLength();
/* Checksum */
if( o.getBadsumIP() == true )
i->setSumRandom();
else
i->setSum();
return OP_SUCCESS;
} /* End of createIPv4() */
/** Fills an IPv6Header object with information obtained from the NpingOps
* class.
* @return OP_SUCCESS on success and fatal()s in case of failure. */
int ProbeMode::createIPv6(IPv6Header *i, PacketElement *next_element, const char *next_proto, NpingTarget *target){
if( i==NULL || next_proto==NULL || target==NULL)
nping_fatal(QT_3,"createIPv6(): NULL pointer supplied.");
/* Set datagram payload */
i->setNextElement( next_element );
i->setVersion();
i->setTrafficClass( o.getTrafficClass() );
i->setFlowLabel( o.getFlowLabel() );
i->setNextHeader(next_proto);
i->setPayloadLength();
i->setDestinationAddress( target->getIPv6Address_u8() );
/* Hop Limit */
if ( o.issetTraceroute() ){
i->setHopLimit( o.getCurrentRound() );
}else{
i->setHopLimit( o.getHopLimit() );
}
/* Source IP */
if( o.issetIPv6SourceAddress() ){
i->setSourceAddress( o.getIPv6SourceAddress() );
}else{
if ( target->getIPv6SourceAddress_u8() != NULL )
i->setSourceAddress( target->getIPv6SourceAddress_u8() );
else
nping_fatal(QT_3, "createIPv6(): Cannot determine Source IPv6 Address");
}
return OP_SUCCESS;
} /* End of createIPv6() */
/** This function is a bit tricky. The thing is that some engineer had
* the brilliant idea to remove IP_HDRINCL support in IPv6. As a result, it's
* a big pain in the ass to create raw IPv6 headers because we can only do it
* if we are sending packets at raw Ethernet level. So if we want our own IPv6
* header (for source IP spoofing, etc) we have to do things like determine
* source and dest MAC addresses (this is even more complicated in IPv6 than
* in IPv4 because we don't have ARP anymore, we have to use something new, the
* NDP, Neighbor Discovery Protocol.)
* So the thing is that, if the user does not want to play with the IPv6 header,
* why bother with all that link layer work? So what we do is create raw
* transport layer packets and then send them through a raw IPv6 socket. The
* socket will encapsulate our packets into a nice clean IPv6 header
* automatically so we don't have to worry about low level details anymore.
*
* So this function basically takes a raw IPv6 socket descriptor and then tries
* to set some basic parameters (like Hop Limit) using setsockopt() calls.
* It always returns OP_SUCCESS. However, if errors are found, they are printed
* (QT_2 level) using nping_warning();
* */
int ProbeMode::doIPv6ThroughSocket(int rawfd){
/* Hop Limit */
int hoplimit=0;
if( o.issetHopLimit() )
hoplimit= o.getHopLimit();
else if ( o.issetTraceroute() ){
hoplimit= (o.getCurrentRound()<255)? o.getCurrentRound() : (o.getCurrentRound()%255)+1;
}else{
hoplimit=DEFAULT_IPv6_TTL;
}
if( setsockopt(rawfd, IPPROTO_IPV6, IPV6_UNICAST_HOPS, (char *)&hoplimit, sizeof(hoplimit)) != 0 )
nping_warning(QT_2, "doIPv6ThroughSocket(): setsockopt() for Unicast Hop Limit on IPv6 socket failed");
if( setsockopt(rawfd, IPPROTO_IPV6, IPV6_MULTICAST_HOPS, (char *)&hoplimit, sizeof(hoplimit)) != 0 )
nping_warning(QT_2, "doIPv6ThroughSocket(): setsockopt() for Multicast Hop Limit on IPv6 socket failed");
#ifdef IPV6_CHECKSUM /* This is not available in when compiling with MinGW */
/* Transport layer checksum */
/* This is totally crazy. We have to tell the kernel EXPLICITLY that we
* want it to set the TCP/UDP checksum for us. Why the hell is this the
* default behavior if it's so incredibly difficult to get the IPv6 source
* address?
* Additionally, we have to be very careful not to set this option when
* dealing with ICMPv6 because in that case the kernel computes the
* checksum automatically and Nping can actually crash if we've set
* this option manually, can you believe it? */
if( o.getMode()==TCP || o.getMode()==UDP){
/* We don't request valid TCP checksums if the user requested bogus sums */
if( o.getBadsum()==false ){
int offset = 16;
if( setsockopt (rawfd, IPPROTO_IPV6, IPV6_CHECKSUM, (char *)&offset, sizeof(offset)) != 0 )
nping_warning(QT_2, "doIPv6ThroughSocket(): failed to set IPV6_CHECKSUM option on IPv6 socket. ");
}
}
#endif
/* Bind IPv6 socket to a specific network interface */
if ( o.issetDevice() ) {
/* It seems that SO_BINDTODEVICE only work on Linux */
#ifdef LINUX
if (setsockopt(rawfd, SOL_SOCKET, SO_BINDTODEVICE, o.getDevice(), strlen(o.getDevice())+1) == -1) {
nping_warning(QT_2, "Error binding IPv6 socket to device %s", o.getDevice() );
}
#endif
}
return OP_SUCCESS;
} /* End of doIPv6ThroughSocket() */
/** This function handles TCP packet creation. However, the final packet that
* it produces also includes an IP header.
* There is one exception. When we are sending IPv6 packet at raw TCP level,
* the returned packet does not contain an IPv6 header but the supplied
* rawfd socket descriptor is ready to go because some options have been
* set on it by doIPv6ThroughSocket(). */
int ProbeMode::fillPacketTCP(NpingTarget *target, u16 port, u8 *buff, int bufflen, int *filledlen, int rawfd){
IPv4Header i;
IPv6Header i6;
TCPHeader t;
RawData p;
struct in_addr tip, sip;
if( buff==NULL || filledlen==NULL || target==NULL)
nping_fatal(QT_3,"fillPacketTCP(): NULL pointer supplied.");
/* Add Payload if necessary */
if ( o.issetPayloadType() ){
switch( o.getPayloadType() ){
case PL_RAND: case PL_HEX: case PL_STRING:
p.store(o.getPayloadBuffer(), o.getPayloadLen());
break;
case PL_FILE:
break;
default:
break;
}
t.setNextElement( &p );
}
/* Craft TCP Header */
t.setSourcePort( o.getSourcePort() );
t.setDestinationPort( port );
t.setSeq( o.getTCPSequence() );
t.setAck( o.getTCPAck() );
t.setOffset();
t.setWindow( o.getTCPWindow() );
t.setUrgPointer(0);
t.setFlags(0);
/* Flags */
if( o.getFlagTCP(FLAG_CWR) == 1 ) t.setCWR();
if( o.getFlagTCP(FLAG_ECN) == 1 ) t.setECN();
if( o.getFlagTCP(FLAG_URG) == 1 ) t.setURG();
if( o.getFlagTCP(FLAG_ACK) == 1 ) t.setACK();
if( o.getFlagTCP(FLAG_PSH) == 1 ) t.setPSH();
if( o.getFlagTCP(FLAG_RST) == 1 ) t.setRST();
if( o.getFlagTCP(FLAG_SYN) == 1 ) t.setSYN();
if( o.getFlagTCP(FLAG_FIN) == 1 ) t.setFIN();
/* Now let's encapsulate the TCP packet into an IP packet */
switch( o.getIPVersion() ){
case IP_VERSION_4:
/* Fill the IPv4Header object with the info from NpingOps */
createIPv4(&i, &t, "TCP", target);
tip=target->getIPv4Address();
i.getSourceAddress(&sip);
if( o.getBadsum() == true ){
t.setSumRandom(tip, sip);
}else{
t.setSum();
}
/* Store result in user supplied buffer */
*filledlen = i.dumpToBinaryBuffer(buff, bufflen);
break;
case IP_VERSION_6:
if( o.sendEth() ){
/* Fill the IPv6Header object with the info from NpingOps */
createIPv6(&i6, &t, "TCP", target);
if( o.getBadsum() == true )
t.setSumRandom();
else{
*filledlen = i6.dumpToBinaryBuffer(buff, bufflen);
ip6_checksum(buff, *filledlen); /* Provided by dnet */
return OP_SUCCESS;
}
/* Store result in user supplied buffer */
*filledlen = i6.dumpToBinaryBuffer(buff, bufflen);
}else{
doIPv6ThroughSocket(rawfd);
/* Set some bogus checksum */
if( o.getBadsum()==true )
t.setSumRandom();
/* Set checksum to zero and pray for the kernel to set it to
* the right value. Brothers and sisters:
*
* Our TCP/IP stack, Who is in the kernel,
* Holy is Your Name;
* Your kingdom come,
* Your will be done,
* on userland as it is in kernel space.
* Give us this day our TCP checksum,
* and forgive us for our raw sockets,
* as we forgive you for your kernel panics;
* and lead us not into /dev/null,
* but deliver our packet to the next hop. Amen.
* */
else
t.setSum(0);
/* Since we cannot include our own header like we do in IPv4, the
* buffer we return is the TCP one. */
*filledlen = t.dumpToBinaryBuffer(buff, bufflen);
}
break;
default:
nping_fatal(QT_3, "fillPacketTCP(): Wrong IP version in NpingOps\n");
break;
}
return OP_SUCCESS;
} /* End of fillPacketTCP() */
/** This function handles UDP packet creation. However, the final packet that
* it produces also includes an IP header.
* There is one exception. When we are sending IPv6 packet at raw TCP level,
* the returned packet does not contain an IPv6 header but the supplied
* rawfd socket descriptor is ready to go because some options have been
* set on it by doIPv6ThroughSocket(). */
int ProbeMode::fillPacketUDP(NpingTarget *target, u16 port, u8 *buff, int bufflen, int *filledlen, int rawfd){
IPv4Header i;
IPv6Header i6;
UDPHeader u;
RawData p;
struct in_addr tip, sip;
if( buff==NULL || filledlen==NULL || target==NULL)
nping_fatal(QT_3,"fillPacketUDP(): NULL pointer supplied.");
/* Add Payload if necessary */
if ( o.issetPayloadType() ){
switch( o.getPayloadType() ){
case PL_RAND: case PL_HEX: case PL_STRING:
p.store(o.getPayloadBuffer(), o.getPayloadLen());
break;
case PL_FILE:
break;
default:
break;
}
u.setNextElement( &p );
}
/* Craft UDP Header */
u.setSourcePort( o.getSourcePort() );
u.setDestinationPort( port );
u.setTotalLength();
/* Now let's encapsulate the TCP packet into an IP packet */
switch( o.getIPVersion() ){
case IP_VERSION_4:
/* Fill the IPv4Header object with the info from NpingOps */
createIPv4(&i, &u, "UDP", target);
/* Set checksum */
tip=target->getIPv4Address();
i.getSourceAddress(&sip);
if( o.getBadsum() == true ){
u.setSumRandom(tip, sip);
}else{
u.setSum();
}
/* Store result in user supplied buffer */
*filledlen = i.dumpToBinaryBuffer(buff, bufflen);
break;
case IP_VERSION_6:
if( o.sendEth() ){
/* Fill the IPv6Header object with the info from NpingOps */
createIPv6(&i6, &u, "UDP", target);
if( o.getBadsum() == true ){
u.setSumRandom();
/* Store result in user supplied buffer */
*filledlen = i6.dumpToBinaryBuffer(buff, bufflen);
}
else{
*filledlen = i6.dumpToBinaryBuffer(buff, bufflen);
ip6_checksum(buff, *filledlen); /* Provided by dnet */
return OP_SUCCESS;
}
}else{
doIPv6ThroughSocket(rawfd);
/* Set some bogus checksum */
if( o.getBadsum()==true )
u.setSumRandom();
/* Set checksum to zero and assume the kernel is gonna set the
* right value. If it doesn't, it's not that important since
* UDP checksum is optional and can safely be set to zero */
else
u.setSum(0);
/* Since we cannot include our own header like we do in IPv4, the
* buffer we return is the UDP one. */
*filledlen = u.dumpToBinaryBuffer(buff, bufflen);
}
break;
default:
nping_fatal(QT_3, "fillPacketUDP(): Wrong IP version in NpingOps\n");
break;
}
return OP_SUCCESS;
} /* End of fillPacketUDP() */
/** This function handles ICMP packet creation. However, the final packet that
* it produces also includes an IP header.
*
* Currently this function only supports ICMPv4 packet creation. ICMPv6 will
* be added in the future.*/
int ProbeMode::fillPacketICMP(NpingTarget *target, u8 *buff, int bufflen, int *filledlen, int rawfd){
IPv4Header i;
IPv6Header i6;
ICMPv4Header c4;
ICMPv6Header c6;
RawData p;
if( buff==NULL || filledlen==NULL || target==NULL)
nping_fatal(QT_3,"fillPacketICMP(): NULL pointer supplied.");
nping_print(DBG_4, "fillPacketICMP(target=%p, buff=%p, bufflen=%d, filledlen=%p)", target, buff, bufflen, filledlen);
/* Add Payload if necessary */
if ( o.issetPayloadType() ){
switch( o.getPayloadType() ){
case PL_RAND: case PL_HEX: case PL_STRING:
p.store(o.getPayloadBuffer(), o.getPayloadLen());
break;
case PL_FILE:
break;
default:
break;
}
c4.setNextElement( &p );
c6.setNextElement( &p );
}
if( o.ipv4() ){
c4.setType( o.getICMPType() );
c4.setCode( o.getICMPCode() );
/* Lets go for type specific options */
switch ( c4.getType() ){
case ICMP_REDIRECT:
c4.setGatewayAddress( o.getICMPRedirectAddress() );
break;
case ICMP_ECHO:
case ICMP_ECHOREPLY:
if( o.issetICMPIdentifier() )
c4.setIdentifier( o.getICMPIdentifier() );
else
c4.setIdentifier( target->getICMPIdentifier() );
if( o.issetICMPSequence() )
c4.setSequence( o.getICMPSequence() );
else
c4.setSequence( target->obtainICMPSequence() );
break;
case ICMP_ROUTERADVERT:
c4.setAddrEntrySize( 2 );
c4.setLifetime( o.getICMPRouterAdvLifetime() );
if( o.issetICMPAdvertEntry() )
for (int z=0; z<o.getICMPAdvertEntryCount(); z++){
struct in_addr entryaddr;
u32 entrypref;
o.getICMPAdvertEntry(z, &entryaddr, &entrypref );
c4.addRouterAdvEntry(entryaddr, entrypref);
}
break;
case ICMP_PARAMPROB:
c4.setParameterPointer( o.getICMPParamProblemPointer() );
break;
case ICMP_TSTAMP:
case ICMP_TSTAMPREPLY:
if( o.issetICMPIdentifier() )
c4.setIdentifier( o.getICMPIdentifier() );
else
c4.setIdentifier( target->getICMPIdentifier() );
if( o.issetICMPSequence() )
c4.setSequence( o.getICMPSequence() );
else
c4.setSequence( target->obtainICMPSequence() );
c4.setOriginateTimestamp( o.getICMPOriginateTimestamp() );
c4.setReceiveTimestamp( o.getICMPReceiveTimestamp() );
c4.setTransmitTimestamp( o.getICMPTransmitTimestamp() );
break;
case ICMP_INFO:
case ICMP_INFOREPLY:
case ICMP_MASK:
case ICMP_MASKREPLY:
case ICMP_TRACEROUTE:
case ICMP_UNREACH:
case ICMP_SOURCEQUENCH:
case ICMP_ROUTERSOLICIT:
case ICMP_TIMXCEED:
break;
default:
/* TODO: What do we do here if user specified a non standard type? */
break;
}
/* Compute checksum */
c4.setSum(); /* TODO: Do we want to implement --badsum-icmp? */
/* Fill the IPv4Header object with the info from NpingOps */
createIPv4(&i, &c4, "ICMP", target);
/* Store result in user supplied buffer */
*filledlen = i.dumpToBinaryBuffer(buff, bufflen);
}else{
c6.setType( o.getICMPType() );
c6.setCode( o.getICMPCode() );
switch( c6.getType() ){
case ICMPv6_ECHO:
case ICMPv6_ECHOREPLY:
c6.setIdentifier(o.issetICMPIdentifier() ? o.getICMPIdentifier() : target->getICMPIdentifier());
c6.setSequence(o.issetICMPSequence() ? o.getICMPSequence() : target->obtainICMPSequence());
break;
case ICMPv6_UNREACH:
case ICMPv6_PKTTOOBIG:
case ICMPv6_TIMXCEED:
case ICMPv6_PARAMPROB:
case ICMPv6_ROUTERSOLICIT:
case ICMPv6_ROUTERADVERT:
case ICMPv6_NGHBRSOLICIT:
case ICMPv6_NGHBRADVERT:
case ICMPv6_REDIRECT:
case ICMPv6_RTRRENUM:
default:
break;
}
/* Fill the IPv4Header object with the info from NpingOps */
createIPv6(&i6, &c6, "ICMPv6", target);
/* Compute checksum */
c6.setSum();
/* Store result in user supplied buffer */
*filledlen = i6.dumpToBinaryBuffer(buff, bufflen);
}
return OP_SUCCESS;
} /* End of fillPacketICMP() */
/** This function handles ARP packet creation. However, the final packet that
* it produces also includes an Ethernet header. */
int ProbeMode::fillPacketARP(NpingTarget *target, u8 *buff, int bufflen, int *filledlen, int rawfd){
EthernetHeader e;
ARPHeader a;
u8 bcastmac[6]={0xFF,0xFF,0xFF,0xFF,0xFF,0xFF};
u8 nullmac[6]={0x00,0x00,0x00,0x00,0x00,0x00};
if(target==NULL || buff==NULL || filledlen==NULL)
nping_fatal(QT_3,"fillPacketARP(): NULL pointer supplied.");
nping_print(DBG_4, "fillPacketARP(target=%p, buff=%p, bufflen=%d, filledlen=%p)", target, buff, bufflen, filledlen);
/* Source MAC Address */
if( o.issetSourceMAC() )
e.setSrcMAC( o.getSourceMAC() );
else if( target->getSrcMACAddress()!=NULL )
e.setSrcMAC(target->getSrcMACAddress());
else
e.setSrcMAC( nullmac ); /* Defaults to 00:00:00:00:00:00 */
/* Destination MAC Address */
if( o.issetDestMAC() )
e.setDstMAC( o.getDestMAC() );
else
e.setDstMAC( bcastmac ); /* Defaults to FF:FF:FF:FF:FF:FF */
/* Ethertype value */
if( o.issetEtherType() )
e.setEtherType( o.getEtherType() );
else
e.setEtherType(ETHTYPE_ARP);
/* Link Ethernet header to ARP packet. */
e.setNextElement(&a);
/* Hardware type */
if( o.issetARPHardwareType() )
a.setHardwareType( o.getARPHardwareType() );
else
a.setHardwareType();
/* Protocol type */
if( o.issetARPProtocolType() )
a.setProtocolType( o.getARPProtocolType() );
else
a.setProtocolType();
/* Length of HW Address */
if( o.issetARPHwAddrLen() )
a.setHwAddrLen( o.getARPHwAddrLen() );
else
a.setHwAddrLen(); /* Defaults to length of a MAC address */
/* Length of Protocol Address */
if( o.issetARPProtoAddrLen() )
a.setProtoAddrLen( o.getARPProtoAddrLen() );
else
a.setProtoAddrLen(); /* Defaults to length of IPv4 */
/* ARP Operation code. */
a.setOpCode( o.getARPOpCode() );
/* Sender HW Address */
if( o.issetARPSenderHwAddr() )
a.setSenderMAC( o.getARPSenderHwAddr() );
else
a.setSenderMAC( e.getSrcMAC() ); /* Get Ethernet's source MAC */
/* Sender Protocol Address */
if( o.issetARPSenderProtoAddr() )
a.setSenderIP( o.getARPSenderProtoAddr() );
else if ( o.issetIPv4SourceAddress() )
a.setSenderIP( o.getIPv4SourceAddress() );
else
a.setSenderIP( target->getIPv4SourceAddress() );
/* Target HW Address */
if( o.issetARPTargetProtoAddr() )
a.setTargetIP( o.getARPTargetProtoAddr() );
else
a.setTargetIP( target->getIPv4Address() );
/* Target Protocol Address */
if( o.issetARPTargetHwAddr() )
a.setTargetMAC( o.getARPTargetHwAddr() );
else
a.setTargetMAC( nullmac ); /* Get Ethernet's target MAC */
/* Store result in user supplied buffer */
*filledlen = e.dumpToBinaryBuffer(buff, bufflen);
return OP_SUCCESS;
}
/** This function creates a BPF filter specification, suitable to be passed to
* pcap_compile() or nsock_pcap_open(). It reads info from "NpingOps o" and
* creates the right BPF filter for the current operation mode. However, if
* user has supplied a custom BPF filter through option --bpf-filter, the
* same string stored in o.getBPFFilterSpec() is returned (so the caller
* should not even bother to check o.issetBPFFilterSpec() because that check
* is done here already.
* @warning Returned pointer is a statically allocated buffer that subsequent
* calls will overwrite. */
char *ProbeMode::getBPFFilterString(){
char ipstring[128];
static char filterstring[1024];
char *buffer=filterstring;
u8 icmp_send_type=0;
u8 icmp_recv_type=0;
u16 arp_send_type=0;
u16 arp_recv_type=0;
bool skip_icmp_matching=false;
bool skip_arp_matching=false;
bool src_equals_target=false;
NpingTarget *t=NULL;
struct sockaddr_storage srcss;
struct sockaddr_in *s4=(struct sockaddr_in *)&srcss;
struct sockaddr_in6 *s6=(struct sockaddr_in6 *)&srcss;
struct sockaddr_storage dstss;
struct sockaddr_in *d4=(struct sockaddr_in *)&dstss;
struct sockaddr_in6 *d6=(struct sockaddr_in6 *)&dstss;
size_t dstlen, srclen;
memset(&srcss, 0, sizeof(struct sockaddr_storage));
memset(&dstss, 0, sizeof(struct sockaddr_storage));
memset(buffer, 0, 1024);
memset(ipstring, 0, 128);
/* If user supplied a BPF from the cmd line, use it */
if( o.issetBPFFilterSpec() ){
buffer=o.getBPFFilterSpec();
/* We copy it to our internal static buffer just in case... */
if(buffer!=NULL)
strncpy(filterstring, buffer, sizeof(filterstring)-1);
else
strncpy(filterstring, "", 2);
nping_print(DBG_1, "BPF-filter: %s", filterstring);
return filterstring;
}
/* For the server in Echo mode we need a special filter */
if( o.getRole()==ROLE_SERVER ){
/* Capture all IP packets but the ones that belong to the side-channel */
sprintf(filterstring, "ip and ( not (tcp and (dst port %d or src port %d) ) )", o.getEchoPort(), o.getEchoPort() );
nping_print(DBG_1, "BPF-filter: %s", filterstring);
return filterstring;
}
/* Obtain source IP address */
if( o.spoofSource() )
memcpy( &srcss, o.getSourceSockAddr(), sizeof(struct sockaddr_storage) );
else if( (t=o.targets.getNextTarget())!= NULL ){
t->getSourceSockAddr(&srcss, &srclen);
}else{
/* This should never happen but if for some reason we cannot obtain
* the target, set localhost address. */
if ( o.ipv6() ){
s4->sin_family=AF_INET;
inet_pton(AF_INET, "::1", &s6->sin6_addr);
}else{
s4->sin_family=AF_INET;
inet_pton(AF_INET, "127.0.0.1", &s4->sin_addr);
}
nping_print(DBG_2, "Couldn't determine source address. Using address %s in BFP filter", IPtoa(&srcss) );
}
o.targets.rewind();
/* Obtain the first target address */
if(t!=NULL)
t->getTargetSockAddr(&dstss, &dstlen);
/* Determine if source address and target address are the same. This is a
* special case that occurs when nping-ing localhost */
if(s6->sin6_family==AF_INET6){
if(memcmp(&s6->sin6_addr, &d6->sin6_addr, sizeof(d6->sin6_addr))==0)
src_equals_target=true;
}else if( s4->sin_family == AF_INET ){
if(s4->sin_addr.s_addr == d4->sin_addr.s_addr)
src_equals_target=true;
}
/* Convert src address to an ascii string so it can be copied to the BPF string */
if(s6->sin6_family==AF_INET6){
inet_ntop(AF_INET6, &s6->sin6_addr, ipstring, sizeof(ipstring));
}else if( s4->sin_family == AF_INET ) {
inet_ntop(AF_INET, &s4->sin_addr, ipstring, sizeof(ipstring));
}else{
nping_warning(QT_2, "Warning: Wrong address family (%d) in getBPFFilterString(). Please report a bug", srcss.ss_family);
sprintf(ipstring,"127.0.0.1");
}
/* Tell the filter that we only want incoming packets, destined to our source IP */
if(o.getMode()!=ARP){
if(src_equals_target)
Snprintf(buffer, 1024, "(src host %s and dst host %s) and (", ipstring, ipstring);
else
Snprintf(buffer, 1024, "(not src host %s and dst host %s) and (", ipstring, ipstring);
buffer=filterstring+strlen(filterstring);
}
/* Time for protocol specific constraints */
switch( o.getMode() ){
case TCP: /* Restrict to packets targeting our TCP source port */
Snprintf(buffer, 1024-strlen(filterstring), "(tcp and dst port %d) ", o.getSourcePort());
break;
case UDP: /* Restrict to packets targeting our UDP source port */
Snprintf(buffer, 1024-strlen(filterstring), "(udp and dst port %d) ", o.getSourcePort());
break;
case ICMP: /* Restrict to packets that are replies to our ICMP packets */
icmp_send_type= o.issetICMPType() ? o.getICMPType() : DEFAULT_ICMP_TYPE;
switch( icmp_send_type ){
case ICMP_TSTAMP:
icmp_recv_type=ICMP_TSTAMPREPLY;
break;
case ICMP_TSTAMPREPLY: /* If we are sending replies we probably want to see */
icmp_recv_type=ICMP_TSTAMP; /* the requests that are being put into the network */
break;
case ICMP_INFO:
icmp_recv_type=ICMP_INFOREPLY;
break;
case ICMP_INFOREPLY:
icmp_recv_type=ICMP_INFO;
break;
case ICMP_MASK:
icmp_recv_type=ICMP_MASKREPLY;
break;
case ICMP_MASKREPLY:
icmp_recv_type=ICMP_MASK;
break;
case ICMP_ECHO:
icmp_recv_type=ICMP_ECHOREPLY;
break;
case ICMP_ECHOREPLY:
icmp_recv_type=ICMP_ECHO;
break;
/* These don't generate any response so we behave different */
case ICMP_UNREACH:
case ICMP_SOURCEQUENCH:
case ICMP_REDIRECT:
case ICMP_ROUTERADVERT:
case ICMP_ROUTERSOLICIT:
case ICMP_TIMXCEED:
case ICMP_PARAMPROB:
case ICMP_TRACEROUTE:
default:
skip_icmp_matching=true;
break;
}
/* We have an specific ICMP type to look for */
if(!skip_icmp_matching){
Snprintf(buffer, 1024-strlen(filterstring), "(icmp and icmp[icmptype] = %d) ", icmp_recv_type);
}else{
/* If we are sending messages that don't generate responses, receive anything but the type we send.
* This conflicts in some cases with the conditions added at the end of this functions where we
* allow ICMP error messages to be received. However, this is not a problem since we are already
* filtering out our own outgoing packets and the packets that are not for us. */
Snprintf(buffer, 1024-strlen(filterstring), "(icmp and icmp[icmptype] != %d) ", icmp_send_type);
}
break;
case ARP:
arp_send_type= o.issetARPOpCode() ? o.getARPOpCode() : DEFAULT_ARP_OP;
switch(arp_send_type){
case OP_ARP_REQUEST:
arp_recv_type=OP_ARP_REPLY;
break;
case OP_ARP_REPLY: /* If we are sending replies we probably want to see */
arp_recv_type=OP_ARP_REQUEST; /* the requests that are being put into the network */
break;
case OP_RARP_REQUEST:
arp_recv_type=OP_RARP_REPLY;
break;
case OP_RARP_REPLY:
arp_recv_type=OP_RARP_REQUEST;
break;
case OP_DRARP_REQUEST:
arp_recv_type=OP_DRARP_REPLY;
break;
case OP_DRARP_REPLY:
arp_recv_type=OP_DRARP_REQUEST;
break;
case OP_DRARP_ERROR:
arp_recv_type=OP_DRARP_REQUEST;
break;
case OP_INARP_REQUEST:
arp_recv_type=OP_INARP_REPLY;
break;
case OP_INARP_REPLY:
arp_recv_type=OP_INARP_REQUEST;
break;
default:
skip_arp_matching=true;
break;
}
if(!skip_arp_matching){
/* If we are doing DRARP we also want to receive DRARP errors */
if(arp_send_type==OP_DRARP_REQUEST || arp_send_type==OP_DRARP_REPLY)
Snprintf(buffer, 1024-strlen(filterstring), "arp and arp[6]==0x00 and (arp[7]==0x%02X or arp[7]==0x%02X)", (u8)arp_recv_type, (u8)OP_DRARP_ERROR);
else
Snprintf(buffer, 1024-strlen(filterstring), "arp and arp[6]==0x00 and arp[7]==0x%02X", (u8)arp_recv_type);
}else{
/* If we are sending things like ATMARP's ARP_NAK, we just skip the type we send and receive all others */
Snprintf(buffer, 1024-strlen(filterstring), "arp and arp[6]==0x00 and arp[7]!=0x%02X", (u8)arp_send_type);
}
break;
}
/* We also want to get all ICMP error messages */
if(o.getMode()!=ARP){
buffer=filterstring+strlen(filterstring);
Snprintf(buffer, 1024-strlen(filterstring), "or (icmp and (icmp[icmptype] = %d or icmp[icmptype] = %d or icmp[icmptype] = %d or icmp[icmptype] = %d or icmp[icmptype] = %d)) )" ,
ICMP_UNREACH, ICMP_SOURCEQUENCH, ICMP_REDIRECT, ICMP_TIMXCEED, ICMP_PARAMPROB);
}
nping_print(DBG_1, "BPF-filter: %s", filterstring);
return filterstring;
} /* End of getBPFFilterString() */
/** Helper to check whether a received ICMP-in-IPv4 packet is related to a probe
* we might have sent. Returns non-NULL target pointer if found. Otherwise
* returns NULL. */
static NpingTarget *is_response_icmp(const unsigned char *packet, unsigned int packetlen) {
const void *data;
unsigned int datalen;
struct abstract_ip_hdr packethdr;
NpingTarget *trg;
/* Parse the outermost IP header (for its source address). */
datalen = packetlen;
data = ip_get_data(packet, &datalen, &packethdr);
if (data == NULL)
return NULL;
trg = o.targets.findTarget(&packethdr.src);
if (trg != NULL) {
if (packethdr.proto == IPPROTO_ICMP) {
struct icmp_hdr *icmp;
struct icmp_msg_echo *echo;
if (datalen < 4)
return NULL;
icmp = (struct icmp_hdr *) data;
/* In case of echo reply, make sure the ICMP ID is the same as we
are sending. */
if (icmp->icmp_type == ICMP_ECHOREPLY) {
u16 expected_id;
if (o.issetICMPIdentifier())
expected_id = o.getICMPIdentifier();
else
expected_id = trg->getICMPIdentifier();
if (datalen < 8)
return NULL;
echo = (struct icmp_msg_echo *) ((char *) icmp + 4);
if (ntohs(echo->icmp_id) != expected_id)
return NULL;
}
}
return trg;
}
/* If that didn't work, check if this is ICMP with an encapsulated IP
header. */
if (packethdr.proto == IPPROTO_ICMP) {
struct ip *ip;
unsigned int iplen;
struct sockaddr_storage ss;
struct sockaddr_in *sin = (struct sockaddr_in *) &ss;
if (datalen < 8)
return NULL;
ip = (struct ip *) ((char *) data + 8);
iplen = datalen - 8;
/* Make sure there is enough header to have a dest address. */
if (iplen < 20)
return NULL;
if (ip->ip_v != 4)
return NULL;
sin->sin_family = AF_INET;
sin->sin_addr = ip->ip_dst;
trg = o.targets.findTarget(&ss);
return trg;
}
return NULL;
}
/** This function handles nsock events related to raw packet modes
* TCP, UDP, ICMP and ARP (TCP_CONNEC and UDP_UNPRIV are handled by their
* own even handlers).
* Basically the handler receives nsock events and takes the appropriate
* action based on event type. This is basically what it does for each event:
*
* TIMERS: start() schedules probe transmissions through timers.
* That's how we manage to send probes at a given rate. When the alarm goes
* off, nsock generates a timer event so, in this function, we take the
* supplied "mydata" pointer, convert it to a sendpkt_t pointer and, from
* the info stored there, we send the packet though a raw socket.
*
* PCAP READS: start() also schedules pcap read operations so,
* whenever pcap has capture a packet, nsock generates a pcap read event so
* we just read the capture data, update the statistics and print the packet
* to stdout.
* */
void ProbeMode::probe_nping_event_handler(nsock_pool nsp, nsock_event nse, void *mydata) {
nsock_iod nsi = nse_iod(nse);
enum nse_status status = nse_status(nse);
enum nse_type type = nse_type(nse);
sendpkt_t *mypacket = (sendpkt_t *)mydata;
u8 pktinfobuffer[512+1];
char *hex=NULL;
char final_output[65535];
nsock_event_id ev_id;
struct timeval *t = (struct timeval *)nsock_gettimeofday();
const unsigned char *packet=NULL;
const unsigned char *link=NULL;
size_t linklen=0;
size_t packetlen=0;
u16 *ethtype=NULL;
u8 buffer[512+1];
size_t link_offset=0;
static struct timeval pcaptime;
static struct timeval prevtime;
NpingTarget *trg=NULL;
u16 *prt=NULL;
u8 proto=0;
bool ip=false;
memset(final_output, 0, sizeof(final_output));
nping_print(DBG_4, "nping_event_handler(): Received callback of type %s with status %s",
nse_type2str(type), nse_status2str(status));
if (status == NSE_STATUS_SUCCESS ) {
switch(type) {
/* This is actually for our raw packet probe transmissions */
case NSE_TYPE_TIMER:
if( mypacket!=NULL){
/* Send the packet */
send_packet(mypacket->target, mypacket->rawfd, mypacket->pkt, mypacket->pktLen);
o.setLastPacketSentTime(*t);
/* Print packet contents */
if( o.sendEth() )
link_offset=14;
if( mypacket->type==PKT_TYPE_ARP_RAW )
getPacketStrInfo("ARP",mypacket->pkt+14, mypacket->pktLen-14, pktinfobuffer, 512);
else if ( o.ipv6UsingSocket() ){
size_t sslen;
struct sockaddr_storage ss_src;
struct sockaddr_storage ss_dst;
mypacket->target->getSourceSockAddr(&ss_src, &sslen);
mypacket->target->getTargetSockAddr(&ss_dst, &sslen);
getPacketStrInfo("IPv6_NO_HEADER", mypacket->pkt, mypacket->pktLen, pktinfobuffer, 512, &ss_src, &ss_dst );
}
else
getPacketStrInfo("IP", mypacket->pkt+link_offset, mypacket->pktLen-link_offset, pktinfobuffer, 512);
o.stats.addSentPacket(mypacket->pktLen);
if( o.getMode()==TCP || o.getMode()==UDP){
mypacket->target->setProbeSentTCP(0, mypacket->dstport);
}else if (o.getMode()==ICMP){
mypacket->target->setProbeSentICMP(0,0);
}
if( o.showSentPackets() ){
nping_print(VB_0,"SENT (%.4fs) %s", o.stats.elapsedRuntime(t), pktinfobuffer );
if( o.getVerbosity() >= VB_3 )
luis_hdump((char*)mypacket->pkt, mypacket->pktLen);
}
}
break;
case NSE_TYPE_PCAP_READ:
/* Read a packet */
nse_readpcap(nse, &link, &linklen, &packet, &packetlen, NULL, &pcaptime);
/* If we are on a Ethernet network, extract the next packet protocol
* from the Ethernet frame. */
if( nsock_iod_linktype(nsi) == DLT_EN10MB ){
ethtype=(u16*)(link+12);
*ethtype=ntohs(*ethtype);
switch(*ethtype){
case ETHTYPE_IPV4:
case ETHTYPE_IPV6:
ip=true;
break;
case ETHTYPE_ARP:
case ETHTYPE_RARP:
ip=false;
break;
default:
nping_warning(QT_1, "RCVD (%.4fs) Unsupported protocol (Ethernet type %02X)", o.stats.elapsedRuntime(t), *ethtype);
print_hexdump(VB_3, packet, packetlen);
return;
break;
}
/* If link layer is not Ethernet, check if the first bits of the
* packets are 4 (IPv4) or 6 (IPv6). This is not exact science but
* it should be OK for the moment since we should never get non
* IP packets (the BPF filter prevents that) */
}else{
IPv4Header iphdr;
if( iphdr.storeRecvData(packet, packetlen)!=OP_SUCCESS )
nping_warning(QT_1, "RCVD (%.4fs) Bogus packet received.", o.stats.elapsedRuntime(t));
if( iphdr.getVersion()==4 || iphdr.getVersion()==6){
ip=true;
}else{
nping_warning(QT_1, "RCVD (%.4fs) Unsupported protocol.", o.stats.elapsedRuntime(t));
print_hexdump(VB_3, packet, packetlen);
return;
}
}
/* Packet is IP */
if(ip){
getPacketStrInfo("IP",(const u8*)packet, packetlen, buffer, 512);
proto = getProtoFromIPPacket((u8*)packet, packetlen);
if (proto == IPPROTO_UDP || proto == IPPROTO_TCP){
/* for UDP/TCP we print out and update the global total straight away
since we know that pcap only found packets from connections that we
opened */
snprintf(final_output, sizeof(final_output), "RCVD (%.4fs) %s\n", o.stats.elapsedRuntime(t), buffer);
if( o.getVerbosity() >= VB_3 ){
hex=hexdump(packet, packetlen);
strncat(final_output, hex, sizeof(final_output)-1);
free(hex);
}
prevtime=pcaptime;
/* Statistics */
o.stats.addRecvPacket(packetlen);
/* Then we check for a target and a port and do the individual statistics */
trg=o.targets.findTarget( getSrcSockAddrFromIPPacket((u8*)packet, packetlen) );
if(trg != NULL){
prt=getSrcPortFromIPPacket((u8*)packet, packetlen);
if( prt!=NULL )
trg->setProbeRecvTCP(*prt, 0);
}
}else if (proto==IPPROTO_ICMP || proto==IPPROTO_ICMPV6){
/* we look for a target based on first src addr and second the dest addr of
the packet header which is returned in the ICMP packet */
trg = is_response_icmp(packet, packetlen);
/* In the case of ICMP we only do any printing and statistics if we
found a target - otherwise it could be a packet that is nothing
to do with us */
if(trg!=NULL){
snprintf(final_output, sizeof(final_output), "RCVD (%.4fs) %s\n", o.stats.elapsedRuntime(t), buffer);
if( o.getVerbosity() >= VB_3 ){
hex=hexdump(packet, packetlen);
strncat(final_output, hex, sizeof(final_output)-1);
free(hex);
}
prevtime=pcaptime;
o.stats.addRecvPacket(packetlen);
trg->setProbeRecvICMP(0, 0);
}
}
/* Packet is ARP */
}else{
getPacketStrInfo("ARP",(const u8*)packet, packetlen, buffer, 512);
nping_print(VB_0, "RCVD (%.4fs) %s", o.stats.elapsedRuntime(t), buffer );
o.stats.addRecvPacket(packetlen);
print_hexdump(VB_3 | NO_NEWLINE, packet, packetlen);
/* TODO: find target and call setProbeRecvARP() */
}
if( o.getRole() == ROLE_CLIENT ){
int delay=(int)MIN(o.getDelay()*0.33, 333);
ev_id=nsock_timer_create(nsp, probe_delayed_output_handler, delay, NULL);
o.setDelayedRcvd(final_output, ev_id);
}
else
nping_print(VB_0|NO_NEWLINE, "%s", final_output);
break;
/* In theory we should never get these kind of events in this handler
* because no code schedules them */
case NSE_TYPE_CONNECT:
case NSE_TYPE_CONNECT_SSL:
case NSE_TYPE_READ:
case NSE_TYPE_WRITE:
nping_fatal(QT_3, "Bug in nping_event_handler(). Received %s event.", nse_type2str(type));
break;
default:
nping_fatal(QT_3, "nping_event_handler(): Bogus event type.");
break;
} /* switch(type) */
} else if (status == NSE_STATUS_EOF) {
nping_print(DBG_4, "nping_event_handler(): Unexpected behaviour: Got EOF. Please report this bug.\n");
} else if (status == NSE_STATUS_ERROR) {
nping_warning(QT_2, "nping_event_handler(): %s failed: %s", nse_type2str(type), strerror(socket_errno()));
} else if (status == NSE_STATUS_TIMEOUT) {
nping_print(DBG_4,"nping_event_handler(): %s timeout: %s\n", nse_type2str(type), strerror(socket_errno()));
} else if (status == NSE_STATUS_CANCELLED) {
nping_warning(QT_2, "nping_event_handler(): %s canceled: %s", nse_type2str(type), strerror(socket_errno()));
} else if (status == NSE_STATUS_KILL) {
nping_warning(QT_2, "nping_event_handler(): %s killed: %s", nse_type2str(type), strerror(socket_errno()));
} else{
nping_warning(QT_2, "nping_event_handler(): Unknown status code %d\n", status);
}
return;
} /* End of nping_event_handler() */
/** Prints the supplied string when the nsock timer event goes off. This is used
* by the echo client to delay output of received packets for a bit, so we
* receive the echoed packet and print it (CAPT) before the RCVD one. */
void ProbeMode::probe_delayed_output_handler(nsock_pool nsp, nsock_event nse, void *mydata){
char *str=NULL;
if((str=o.getDelayedRcvd(NULL))!=NULL){
printf("%s", str);
free(str);
}
return;
} /* End of probe_delayed_output_handler() */
/* DEFAULT_MAX__DESCRIPTORS. is a hardcoded value for the maximum number of
* opened descriptors in the current system. Nping tries to determine that
* limit at run time, but sometimes it can't and the limit defaults to
* DEFAULT_MAX_DESCRIPTORS. */
#ifndef MACOSX
#define DEFAULT_MAX_DESCRIPTORS 1024
#else
#define DEFAULT_MAX_DESCRIPTORS 256
#endif
/* When requesting a large number of descriptors from the system (TCP-connect
* mode and UDP unprivileged mode), this is the number of descriptors that need
* to be reserved for things like stdin, stdout, echo mode sockets, data files,
* etc. */
#define RESERVED_DESCRIPTORS 8
/* Default timeout for UDP socket nsock_read() operations */
#define DEFAULT_UDP_READ_TIMEOUT_MS 1000
/** This function handles nsock events related to TCP_CONNECT mode
* Basically the handler receives nsock events and takes the appropriate
* action based on event type. This is basically what it does for each event:
*
* TIMERS: normalProbeMode() schedules TCP connections through timers, that's
* how we manage to start the TCP handshakes at a given rate. When the alarm
* goes off, nsock generates a timer event so, in this function, we take the
* supplied "mydata" pointer, convert it to a sendpkt_t pointer and, from
* the info stored there, we schedule a nsock_connect_tcp() event. This means
* that nsock will initiate a TCP handshake and return. Whenever the handshake
* is completed, nsock will generate a CONNECT event to indicate it so we
* know the other peer was alive and willing to TCP-handshake with us.
*
* CONNECTS: These events are scheduled by the code that handles timer events.
* As described above, nsock generates a connect event when handshakes have
* completed. When we get a connect event we just tell the user the handshake
* was successful and update the stats.
* */
/* This is the callback function for the nsock events produced in TCP-Connect
* mode. */
void ProbeMode::probe_tcpconnect_event_handler(nsock_pool nsp, nsock_event nse, void *mydata) {
nsock_iod nsi; /**< Current nsock IO descriptor. */
enum nse_status status; /**< Current nsock event status. */
enum nse_type type; /**< Current nsock event type. */
sendpkt_t *mypacket=NULL; /**< Info about the current probe. */
struct timeval *t=NULL; /**< Current time obtained through nsock. */
struct sockaddr_storage to; /**< Stores destination address for Tx. */
struct sockaddr_in *to4=NULL; /**< |_ Sockaddr for IPv4. */
struct sockaddr_in6 *to6=NULL; /**< |_ Sockaddr for IPv6. */
struct sockaddr_storage peer; /**< Stores source address for Rx. */
struct sockaddr_in *peer4=NULL; /**< |_ Sockaddr for IPv4. */
struct sockaddr_in6 *peer6=NULL; /**< |_ Sockaddr for IPv6. */
int family=0; /**< Hill hold Rx address family. */
char ipstring[128]; /**< To print IP Addresses. */
u16 peerport=0; /**< To hold peer's port number. */
size_t sslen=0; /**< To store length of sockaddr structs. */
static nsock_iod *fds=NULL; /**< IODs for multiple parallel connections*/
static int max_iods=0; /**< Number of IODS in "fds" */
static u32 packetno=0; /**< Packets sent from this handler. */
NpingTarget *trg=NULL; /**< Target we look up in NpingTargets:: */
/* Initializations */
nsi = nse_iod(nse);
status = nse_status(nse);
type = nse_type(nse);
mypacket = (sendpkt_t *)mydata;
t = (struct timeval *)nsock_gettimeofday();
to6=(struct sockaddr_in6 *)&to;
to4=(struct sockaddr_in *)&to;
peer4=(struct sockaddr_in *)&peer;
peer6=(struct sockaddr_in6 *)&peer;
memset(&to, 0, sizeof(struct sockaddr_storage));
memset(&peer, 0, sizeof(struct sockaddr_storage));
/* Try to determine the max number of opened descriptors. If the limit is
* less than than we need, try to increase it. */
if(fds==NULL){
max_iods=get_max_open_descriptors()-RESERVED_DESCRIPTORS;
if( o.getTotalProbes() > max_iods ){
max_iods=set_max_open_descriptors( o.getTotalProbes() )-RESERVED_DESCRIPTORS;
}
/* If we couldn't determine the limit, just use a predefined value */
if(max_iods<=0)
max_iods=DEFAULT_MAX_DESCRIPTORS-RESERVED_DESCRIPTORS;
/* Allocate space for nsock_iods */
if( (fds=(nsock_iod *)calloc(max_iods, sizeof(nsock_iod)))==NULL ){
/* If we can't allocate for that many descriptors, reduce our requirements */
max_iods=DEFAULT_MAX_DESCRIPTORS-RESERVED_DESCRIPTORS;
if( (fds=(nsock_iod *)calloc(max_iods, sizeof(nsock_iod)))==NULL ){
nping_fatal(QT_3, "ProbeMode::probe_tcpconnect_event_handler(): Not enough memory");
}
}
nping_print(DBG_7, "%d descriptors needed, %d available", o.getTotalProbes(), max_iods);
}
nping_print(DBG_4, "tcpconnect_event_handler(): Received callback of type %s with status %s", nse_type2str(type), nse_status2str(status));
if (status == NSE_STATUS_SUCCESS ) {
switch(type) {
/* TCP Handshake was completed successfully */
case NSE_TYPE_CONNECT:
if( mypacket==NULL )
nping_fatal(QT_3, "tcpconnect_event_handler(): NULL value supplied.");
/* Determine which target are we dealing with */
nsock_iod_get_communication_info(nsi, NULL, &family, NULL,
(struct sockaddr*)&peer,
sizeof(struct sockaddr_storage) );
if(family==AF_INET6){
inet_ntop(AF_INET6, &peer6->sin6_addr, ipstring, sizeof(ipstring));
peerport=ntohs(peer6->sin6_port);
}else{
inet_ntop(AF_INET, &peer4->sin_addr, ipstring, sizeof(ipstring));
peerport=ntohs(peer4->sin_port);
}
/* We cannot trust "mydata" pointer because it's contents may have
* been overwritten by the time we get the CONNECT event, so we have
* to look up the target by its IP address. */
trg=o.targets.findTarget( &peer );
if(trg!=NULL){
if ( trg->getSuppliedHostName() )
nping_print(VB_0,"RECV (%.4fs) Handshake with %s:%d (%s:%d) completed",
o.stats.elapsedRuntime(t), trg->getSuppliedHostName(), peerport, ipstring, peerport );
else
nping_print(VB_0,"RECV (%.4fs) Handshake with %s:%d completed", o.stats.elapsedRuntime(t), ipstring, peerport );
trg->setProbeRecvTCP( peerport , 0);
}else{
nping_print(VB_0,"RECV (%.4fs) Handshake with %s:%d completed", o.stats.elapsedRuntime(t), ipstring, peerport );
}
o.stats.addRecvPacket(40); /* Estimation Dst>We 1 TCP SYN|ACK */
break;
/* We need to start an scheduled TCP Handshake. Theoretically in this
* case we can trust the supplied "mydata" structure because all our timers
* have the same exact time and Nsock should do FIFO with list of timer
* events. Additionally, even if that failed, more than MAX_PKT timer
* events would have to overlap to "corrupt" "mydata". Even if that's
* the case, it is only a problem when dealing with multiple targets host
* and/or multiple target ports. */
case NSE_TYPE_TIMER:
if( mypacket==NULL )
nping_fatal(QT_3, "tcpconnect_event_handler():2: NULL value supplied.");
/* Fill the appropriate sockaddr for the connect() call */
if( o.getIPVersion() == IP_VERSION_6 ){
to6->sin6_addr=mypacket->target->getIPv6Address();
to6->sin6_family = AF_INET6;
to6->sin6_port = htons( mypacket->dstport );
sslen=sizeof(struct sockaddr_in6);
}else{
to4->sin_addr=mypacket->target->getIPv4Address();
to4->sin_family = AF_INET;
to4->sin_port = htons( mypacket->dstport );
sslen=sizeof(struct sockaddr_in);
}
/* We need to keep many IODs open in parallel but we don't allocate
* millions, just as many as the OS let us (max number of open files).
* If we run out of them, we just start overwriting the oldest one.
* If we don't have a response by that time we probably aren't gonna
* get any, so it shouldn't be a big problem. */
if( packetno>(u32)max_iods ){
nsock_iod_delete(fds[packetno%max_iods], NSOCK_PENDING_SILENT);
}
/* Create new IOD for connects */
if ((fds[packetno%max_iods] = nsock_iod_new(nsp, NULL)) == NULL)
nping_fatal(QT_3, "tcpconnect_event_handler(): Failed to create new nsock_iod.\n");
/* Set socket source address. This allows setting things like custom source port */
struct sockaddr_storage ss;
nsock_iod_set_localaddr(fds[packetno%max_iods], o.getSourceSockAddr(&ss), sizeof(sockaddr_storage));
/*Set socket options for REUSEADDR*/
//setsockopt(nsock_iod_get_sd(fds[packetno%max_iods]),SOL_SOCKET,SO_REUSEADDR,&optval,sizeof(optval));
nsock_connect_tcp(nsp, fds[packetno%max_iods], tcpconnect_event_handler, 100000, mypacket, (struct sockaddr *)&to, sslen, mypacket->dstport);
if( o.showSentPackets() ){
if ( mypacket->target->getSuppliedHostName() )
nping_print(VB_0,"SENT (%.4fs) Starting TCP Handshake > %s:%d (%s:%d)", o.stats.elapsedRuntime(NULL), mypacket->target->getSuppliedHostName(), mypacket->dstport ,mypacket->target->getTargetIPstr(), mypacket->dstport);
else
nping_print(VB_0,"SENT (%.4fs) Starting TCP Handshake > %s:%d", o.stats.elapsedRuntime(NULL), mypacket->target->getTargetIPstr(), mypacket->dstport);
}
packetno++;
o.stats.addSentPacket(80); /* Estimation Src>Dst 1 TCP SYN && TCP ACK */
mypacket->target->setProbeSentTCP(0, mypacket->dstport);
break;
case NSE_TYPE_WRITE:
case NSE_TYPE_READ:
case NSE_TYPE_PCAP_READ:
case NSE_TYPE_CONNECT_SSL:
nping_warning(QT_2,"tcpconnect_event_handler(): Unexpected behaviour, %s event received . Please report this bug.", nse_type2str(type));
break;
default:
nping_fatal(QT_3, "tcpconnect_event_handler(): Bogus event type (%d). Please report this bug.", type);
break;
} /* switch(type) */
} else if (status == NSE_STATUS_EOF) {
nping_print(DBG_4, "tcpconnect_event_handler(): Unexpected behaviour: Got EOF. Please report this bug.\n");
} else if (status == NSE_STATUS_ERROR) {
/** In my tests with Nping and Wireshark, I've seen that we get NSE_STATUS_ERROR
* whenever we start a TCP handshake but our peer sends a TCP RST packet back
* denying the connection. So in this case, we inform the user (as opposed
* to saying nothing, that's what we do when we don't get responses, e.g:
* when trying to connect to filtered ports). This is not 100% accurate
* because there may be other reasons why ge get NSE_STATUS_ERROR so that's
* why we say "Possible TCP RST received". */
if ( type == NSE_TYPE_CONNECT ){
nsock_iod_get_communication_info(nsi, NULL, &family, NULL, (struct sockaddr*)&peer, sizeof(struct sockaddr_storage) );
if(family==AF_INET6){
inet_ntop(AF_INET6, &peer6->sin6_addr, ipstring, sizeof(ipstring));
peerport=ntohs(peer6->sin6_port);
}else{
inet_ntop(AF_INET, &peer4->sin_addr, ipstring, sizeof(ipstring));
peerport=ntohs(peer4->sin_port);
}
nping_print(VB_0,"RECV (%.4fs) Possible TCP RST received from %s:%d --> %s", o.stats.elapsedRuntime(t),ipstring, peerport, strerror(nse_errorcode(nse)) );
}
else
nping_warning(QT_2,"ERR: (%.4fs) %s to %s:%d failed: %s", o.stats.elapsedRuntime(t), nse_type2str(type), ipstring, peerport, strerror(socket_errno()));
} else if (status == NSE_STATUS_TIMEOUT) {
nping_print(DBG_4, "tcpconnect_event_handler(): %s timeout: %s\n", nse_type2str(type), strerror(socket_errno()));
} else if (status == NSE_STATUS_CANCELLED) {
nping_print(DBG_4, "tcpconnect_event_handler(): %s canceled: %s", nse_type2str(type), strerror(socket_errno()));
} else if (status == NSE_STATUS_KILL) {
nping_print(DBG_4, "tcpconnect_event_handler(): %s killed: %s", nse_type2str(type), strerror(socket_errno()));
} else{
nping_warning(QT_2, "tcpconnect_event_handler(): Unknown status code %d. Please report this bug.", status);
}
return;
} /* End of tcpconnect_event_handler() */
/** This function handles nsock events related to UDP_UNPRIV mode.
* Basically the handler receives nsock events and takes the appropriate
* action based on event type. This is basically what it does for each event:
*
* TIMERS: normalProbeMode() schedules UDP packet transmissions through timers,
* that's how we manage to send the packets at a given rate. When the alarm
* goes off, nsock generates a timer event so, in this function, we take the
* supplied "mydata" pointer, convert it to a sendpkt_t pointer and, from
* the info stored there, we schedule a nsock_connect_udp() event. This means
* that nsock will perform the necessary system calls to obtain a UDP socket
* suitable to transmit information to our target host. We also schedule
* a write operation, since the connect_udp() doesn't do anything useful
* really and what we want to do is to actually send a TCP packet.
*
*
* CONNECTS: These events generated by nsock for consistency with the
* behavior in TCP connects. They are pretty useless. They merely indicate
* that nsock successfully obtained a UDP socket ready to allow sending
* packets to the appropriate target. We basically don't do anything when
* that event is received, just print a message if we are un debugging mode.
*
* WRITES: When we get event WRITE it means that nsock actually managed to
* get our data sent to the target. In this case, we inform the user that
* the packet has been sent, and we schedule a READ operation, to see
* if our peer actually returns any data.
*
* READS: When we get this event it means that the other end actually sent
* some data back to us. What we do is read that data, tell the user that
* we received some bytes and update statistics.
*
* */
void ProbeMode::probe_udpunpriv_event_handler(nsock_pool nsp, nsock_event nse, void *mydata) {
nsock_iod nsi; /**< Current nsock IO descriptor. */
enum nse_status status; /**< Current nsock event status. */
enum nse_type type; /**< Current nsock event type. */
sendpkt_t *mypacket=NULL; /**< Info about the current probe. */
struct timeval *t=NULL; /**< Current time obtained through nsock. */
struct sockaddr_storage to; /**< Stores destination address for Tx. */
struct sockaddr_in *to4=NULL; /**< |_ Sockaddr for IPv4. */
struct sockaddr_in6 *to6=NULL; /**< |_ Sockaddr for IPv6. */
struct sockaddr_storage peer; /**< Stores source address for Rx. */
struct sockaddr_in *peer4=NULL; /**< |_ Sockaddr for IPv4. */
struct sockaddr_in6 *peer6=NULL; /**< |_ Sockaddr for IPv6. */
int family=0; /**< Hill hold Rx address family. */
char ipstring[128]; /**< To print IP Addresses. */
u16 peerport=0; /**< To hold peer's port number. */
size_t sslen=0; /**< To store length of sockaddr structs. */
static nsock_iod *fds=NULL; /**< IODs for multiple parallel connections*/
static int max_iods=0; /**< Number of IODS in "fds" */
static u32 packetno=0; /**< Packets sent from this handler. */
int readbytes=0; /**< Bytes read in total. */
char *readbuff=NULL; /**< Hill hold read data. */
static size_t sentbytes=0; /**< Payload bytes sent in each UDP packet */
NpingTarget *trg=NULL; /**< Target we look up in NpingTargets:: */
/* Initializations */
nsi = nse_iod(nse);
status = nse_status(nse);
type = nse_type(nse);
mypacket = (sendpkt_t *)mydata;
t = (struct timeval *)nsock_gettimeofday();
to6=(struct sockaddr_in6 *)&to;
to4=(struct sockaddr_in *)&to;
peer4=(struct sockaddr_in *)&peer;
peer6=(struct sockaddr_in6 *)&peer;
memset(&to, 0, sizeof(struct sockaddr_storage));
memset(&peer, 0, sizeof(struct sockaddr_storage));
/* Try to determine the max number of opened descriptors. If the limit is
* less than than we need, try to increase it. */
if(fds==NULL){
max_iods=get_max_open_descriptors()-RESERVED_DESCRIPTORS;
if( o.getTotalProbes() > max_iods ){
max_iods=set_max_open_descriptors( o.getTotalProbes() )-RESERVED_DESCRIPTORS;
}
/* If we couldn't determine the limit, just use a predefined value */
if(max_iods<=0)
max_iods=DEFAULT_MAX_DESCRIPTORS-RESERVED_DESCRIPTORS;
/* Allocate space for nsock_iods */
if( (fds=(nsock_iod *)calloc(max_iods, sizeof(nsock_iod)))==NULL ){
/* If we can't allocate for that many descriptors, reduce our requirements */
max_iods=DEFAULT_MAX_DESCRIPTORS-RESERVED_DESCRIPTORS;
if( (fds=(nsock_iod *)calloc(max_iods, sizeof(nsock_iod)))==NULL ){
nping_fatal(QT_3, "ProbeMode:probe_udpunpriv_event_handler(): Not enough memory");
}
}
nping_print(DBG_7, "%d descriptors needed, %d available", o.getTotalProbes(), max_iods);
}
nping_print(DBG_4, "udpunpriv_event_handler(): Received callback of type %s with status %s", nse_type2str(type), nse_status2str(status));
if (status == NSE_STATUS_SUCCESS ) {
switch(type) {
/* This is a bit stupid but, for consistency, Nsock creates an event of
* type NSE_TYPE_CONNECT after a call to nsock_connect_udp() is made.
* Basically this just means that nsock successfully obtained a UDP socket
* ready to allow sending packets to the appropriate target. */
case NSE_TYPE_CONNECT:
nping_print(DBG_3,"Nsock UDP \"connection\" completed successfully.");
break;
/* We need to start an scheduled UDP packet transmission. */
case NSE_TYPE_TIMER:
if( mypacket==NULL )
nping_fatal(QT_3, "udpunpriv_event_handler():: NULL value supplied.");
/* Fill the appropriate sockaddr for the connect() call */
if( o.getIPVersion() == IP_VERSION_6 ){
to6->sin6_addr=mypacket->target->getIPv6Address();
to6->sin6_family = AF_INET6;
to6->sin6_port = htons( mypacket->dstport );
sslen=sizeof(struct sockaddr_in6);
}else{
to4->sin_addr=mypacket->target->getIPv4Address();
to4->sin_family = AF_INET;
to4->sin_port = htons( mypacket->dstport );
sslen=sizeof(struct sockaddr_in);
}
/* We need to keep many IODs open in parallel but we don't allocate
* millions, just as many as the OS let us (max number of open files).
* If we run out of them, we just start overwriting the oldest one.
* If we don't have a response by that time we probably aren't gonna
* get any, so it shouldn't be a big problem. */
if( packetno>(u32)max_iods ){
nsock_iod_delete(fds[packetno%max_iods], NSOCK_PENDING_SILENT);
}
/* Create new IOD for connects */
if ((fds[packetno%max_iods] = nsock_iod_new(nsp, NULL)) == NULL)
nping_fatal(QT_3, "Failed to create new nsock_iod. QUITTING.\n");
/* Set socket source address. This allows setting things like custom source port */
struct sockaddr_storage ss;
nsock_iod_set_localaddr(fds[packetno%max_iods], o.getSourceSockAddr(&ss), sizeof(sockaddr_storage));
/* I dunno if it's safe to schedule an nsock_write before we
* receive a NSE_TYPE_CONNECT event. The call to nsock_connect_udp()
* calls inheritable_socket() before returning which should mean
* an actual socket() call has been made before we nsock_write().
* However, if the way nsock behaves changes in the future it may
* break this so we may need to place nsock_write() in
* "case NSE_TYPE_CONNECT:". We could do it right now but it may
* be a bit complicated due to the "packetno" index.
*/
nsock_connect_udp(nsp, fds[packetno%max_iods], udpunpriv_event_handler, mypacket, (struct sockaddr *)&to, sslen, mypacket->dstport);
nsock_write(nsp, fds[packetno%max_iods], udpunpriv_event_handler,100000, mypacket, (const char*)mypacket->pkt, mypacket->pktLen);
sentbytes=mypacket->pktLen;
packetno++;
break;
/* We get this event as a result of the nsock_write() call performed by
* the code in charge of dealing with the timer event. When we get this
* even it means that nsock successfully wrote data to the UDP socket so
* here we basically just print that we did send some data and we schedule
* a read operation.
*/
case NSE_TYPE_WRITE:
/* Determine which target are we dealing with */
nsock_iod_get_communication_info(nsi, NULL, &family, NULL, (struct sockaddr*)&peer, sizeof(struct sockaddr_storage) );
if(family==AF_INET6){
inet_ntop(AF_INET6, &peer6->sin6_addr, ipstring, sizeof(ipstring));
peerport=ntohs(peer6->sin6_port);
}else{
inet_ntop(AF_INET, &peer4->sin_addr, ipstring, sizeof(ipstring));
peerport=ntohs(peer4->sin_port);
}
/* We cannot trust "mydata" pointer because it's contents may have
* been overwritten by the time we get the WRITE event, (this is
* unlikely but it may happen when sending probes at a very high rate).
* As a consequence, we have to look up the target by its IP address. */
trg=o.targets.findTarget( &peer );
if(trg!=NULL){
if ( trg->getSuppliedHostName() )
nping_print(VB_0,"SENT (%.4fs) UDP packet with %lu bytes to %s:%d (%s:%d)", o.stats.elapsedRuntime(NULL), (unsigned long int)sentbytes, trg->getSuppliedHostName(), peerport, ipstring, peerport );
else
nping_print(VB_0,"SENT (%.4fs) UDP packet with %lu bytes to %s:%d", o.stats.elapsedRuntime(NULL), (unsigned long int)sentbytes, ipstring, peerport );
trg->setProbeSentUDP( 0, peerport);
}else{
nping_print(VB_0,"SENT (%.4fs) UDP packet with %lu bytes to %s:%d", o.stats.elapsedRuntime(t), (unsigned long int)sentbytes, ipstring, peerport );
}
o.stats.addSentPacket(sentbytes); /* Here we don't count the headers, just payload bytes */
/* If user did not disable packet capture, schedule a read operation */
if( !o.disablePacketCapture() )
nsock_read(nsp, nsi, udpunpriv_event_handler, DEFAULT_UDP_READ_TIMEOUT_MS, mypacket);
break;
/* We get this event when we've written some data to a UDP socket and
* the other end has sent some data back. In this case we read the data and
* inform the user of how many bytes we got.
*/
case NSE_TYPE_READ:
/* Do an actual read() of the recv data */
readbuff=nse_readbuf(nse, &readbytes);
if(readbuff==NULL){
nping_fatal(QT_3, "Error: nse_readbuff failed to read in the from the probe");
}
/* Determine which target are we dealing with */
nsock_iod_get_communication_info(nsi, NULL, &family, NULL, (struct sockaddr*)&peer, sizeof(struct sockaddr_storage) );
if(family==AF_INET6){
inet_ntop(AF_INET6, &peer6->sin6_addr, ipstring, sizeof(ipstring));
peerport=ntohs(peer6->sin6_port);
}else{
inet_ntop(AF_INET, &peer4->sin_addr, ipstring, sizeof(ipstring));
peerport=ntohs(peer4->sin_port);
}
/* Lookup our peer's NpingTarget entry */
trg=o.targets.findTarget( &peer );
if(trg!=NULL){
if ( trg->getSuppliedHostName() )
nping_print(VB_0,"RECV (%.4fs) UDP packet with %d bytes from %s:%d (%s:%d)", o.stats.elapsedRuntime(NULL), readbytes, trg->getSuppliedHostName(), peerport, ipstring, peerport );
else
nping_print(VB_0,"RECV (%.4fs) UDP packet with %d bytes from %s:%d", o.stats.elapsedRuntime(NULL), readbytes, ipstring, peerport );
trg->setProbeRecvUDP(peerport, 0);
}else{
nping_print(VB_0,"RECV (%.4fs) UDP packet with %d bytes from %s:%d", o.stats.elapsedRuntime(t), readbytes, ipstring, peerport );
}
o.stats.addRecvPacket(readbytes);
break;
case NSE_TYPE_PCAP_READ:
case NSE_TYPE_CONNECT_SSL:
nping_warning(QT_2,"udpunpriv_event_handler(): Unexpected behavior, %s event received . Please report this bug.", nse_type2str(type));
break;
default:
nping_fatal(QT_3, "udpunpriv_event_handler(): Bogus event type (%d). Please report this bug.", type);
break;
} /* switch(type) */
} else if (status == NSE_STATUS_EOF) {
nping_print(DBG_4, "udpunpriv_event_handler(): Unexpected behaviour: Got EOF. Please report this bug.\n");
} else if (status == NSE_STATUS_ERROR) {
nsock_iod_get_communication_info(nsi, NULL, &family, NULL, (struct sockaddr*)&peer, sizeof(struct sockaddr_storage) );
if(family==AF_INET6){
inet_ntop(AF_INET6, &peer6->sin6_addr, ipstring, sizeof(ipstring));
peerport=ntohs(peer6->sin6_port);
}else{
inet_ntop(AF_INET, &peer4->sin_addr, ipstring, sizeof(ipstring));
peerport=ntohs(peer4->sin_port);
}
nping_warning(QT_2,"ERR: (%.4fs) %s to %s:%d failed: %s", o.stats.elapsedRuntime(t), nse_type2str(type), ipstring, peerport, strerror(socket_errno()));
} else if (status == NSE_STATUS_TIMEOUT) {
nping_print(DBG_4, "udpunpriv_event_handler(): %s timeout: %s\n", nse_type2str(type), strerror(socket_errno()));
} else if (status == NSE_STATUS_CANCELLED) {
nping_print(DBG_4, "udpunpriv_event_handler(): %s canceled: %s", nse_type2str(type), strerror(socket_errno()));
} else if (status == NSE_STATUS_KILL) {
nping_print(DBG_4, "udpunpriv_event_handler(): %s killed: %s", nse_type2str(type), strerror(socket_errno()));
}
else{
nping_warning(QT_2, "udpunpriv_event_handler(): Unknown status code %d. Please report this bug.", status);
}
return;
} /* End of udpunpriv_event_handler() */
/* This handler is a wrapper for the ProbeMode::probe_nping_event_handler()
* method. We need this because C++ does not allow to use class methods as
* callback functions for things like signal() or the Nsock lib. */
void nping_event_handler(nsock_pool nsp, nsock_event nse, void *arg){
nping_print(DBG_4, "%s()", __func__);
ProbeMode::probe_nping_event_handler(nsp, nse, arg);
return;
} /* End of nping_event_handler() */
/* This handler is a wrapper for the ProbeMode::probe_tcpconnect_event_handler()
* method. We need this because C++ does not allow to use class methods as
* callback functions for things like signal() or the Nsock lib. */
void tcpconnect_event_handler(nsock_pool nsp, nsock_event nse, void *arg){
nping_print(DBG_4, "%s()", __func__);
ProbeMode::probe_tcpconnect_event_handler(nsp, nse, arg);
return;
} /* End of tcpconnect_event_handler() */
/* This handler is a wrapper for the ProbeMode::probe_udpunpriv_event_handler()
* method. We need this because C++ does not allow to use class methods as
* callback functions for things like signal() or the Nsock lib. */
void udpunpriv_event_handler(nsock_pool nsp, nsock_event nse, void *arg){
nping_print(DBG_4, "%s()", __func__);
ProbeMode::probe_udpunpriv_event_handler(nsp, nse, arg);
return;
} /* End of udpunpriv_event_handler() */
/* This handler is a wrapper for the ProbeMode::probe_delayed_output_handler()
* method. We need this because C++ does not allow to use class methods as
* callback functions for things like signal() or the Nsock lib. */
void delayed_output_handler(nsock_pool nsp, nsock_event nse, void *arg){
nping_print(DBG_4, "%s()", __func__);
ProbeMode::probe_delayed_output_handler(nsp, nse, arg);
return;
} /* End of udpunpriv_event_handler() */