mirror of
https://github.com/nmap/nmap.git
synced 2025-12-06 04:31:29 +00:00
svn merge --ignore-ancestry svn://svn.insecure.org/nmap@26621 svn://svn.insecure.org/nmap-exp/luis/nmap-os6 This is the IPv6 OS detection branch. "nmap -6 -O" works now, though at this point it only prints fingerprints and not OS guesses, because we need to collect more submissions.
219 lines
4.4 KiB
C
219 lines
4.4 KiB
C
#include <stdio.h>
|
|
#include <ctype.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include "linear.h"
|
|
|
|
struct feature_node *x;
|
|
int max_nr_attr = 64;
|
|
|
|
struct model* model_;
|
|
int flag_predict_probability=0;
|
|
|
|
void exit_input_error(int line_num)
|
|
{
|
|
fprintf(stderr,"Wrong input format at line %d\n", line_num);
|
|
exit(1);
|
|
}
|
|
|
|
static char *line = NULL;
|
|
static int max_line_len;
|
|
|
|
static char* readline(FILE *input)
|
|
{
|
|
int len;
|
|
|
|
if(fgets(line,max_line_len,input) == NULL)
|
|
return NULL;
|
|
|
|
while(strrchr(line,'\n') == NULL)
|
|
{
|
|
max_line_len *= 2;
|
|
line = (char *) realloc(line,max_line_len);
|
|
len = (int) strlen(line);
|
|
if(fgets(line+len,max_line_len-len,input) == NULL)
|
|
break;
|
|
}
|
|
return line;
|
|
}
|
|
|
|
void do_predict(FILE *input, FILE *output, struct model* model_)
|
|
{
|
|
int correct = 0;
|
|
int total = 0;
|
|
|
|
int nr_class=get_nr_class(model_);
|
|
double *prob_estimates=NULL;
|
|
int j, n;
|
|
int nr_feature=get_nr_feature(model_);
|
|
if(model_->bias>=0)
|
|
n=nr_feature+1;
|
|
else
|
|
n=nr_feature;
|
|
|
|
if(flag_predict_probability)
|
|
{
|
|
int *labels;
|
|
|
|
if(!check_probability_model(model_))
|
|
{
|
|
fprintf(stderr, "probability output is only supported for logistic regression\n");
|
|
exit(1);
|
|
}
|
|
|
|
labels=(int *) malloc(nr_class*sizeof(int));
|
|
get_labels(model_,labels);
|
|
prob_estimates = (double *) malloc(nr_class*sizeof(double));
|
|
fprintf(output,"labels");
|
|
for(j=0;j<nr_class;j++)
|
|
fprintf(output," %d",labels[j]);
|
|
fprintf(output,"\n");
|
|
free(labels);
|
|
}
|
|
|
|
max_line_len = 1024;
|
|
line = (char *)malloc(max_line_len*sizeof(char));
|
|
while(readline(input) != NULL)
|
|
{
|
|
int i = 0;
|
|
int target_label, predict_label;
|
|
char *idx, *val, *label, *endptr;
|
|
int inst_max_index = 0; // strtol gives 0 if wrong format
|
|
|
|
label = strtok(line," \t\n");
|
|
if(label == NULL) // empty line
|
|
exit_input_error(total+1);
|
|
|
|
target_label = (int) strtol(label,&endptr,10);
|
|
if(endptr == label || *endptr != '\0')
|
|
exit_input_error(total+1);
|
|
|
|
while(1)
|
|
{
|
|
if(i>=max_nr_attr-2) // need one more for index = -1
|
|
{
|
|
max_nr_attr *= 2;
|
|
x = (struct feature_node *) realloc(x,max_nr_attr*sizeof(struct feature_node));
|
|
}
|
|
|
|
idx = strtok(NULL,":");
|
|
val = strtok(NULL," \t");
|
|
|
|
if(val == NULL)
|
|
break;
|
|
errno = 0;
|
|
x[i].index = (int) strtol(idx,&endptr,10);
|
|
if(endptr == idx || errno != 0 || *endptr != '\0' || x[i].index <= inst_max_index)
|
|
exit_input_error(total+1);
|
|
else
|
|
inst_max_index = x[i].index;
|
|
|
|
errno = 0;
|
|
x[i].value = strtod(val,&endptr);
|
|
if(endptr == val || errno != 0 || (*endptr != '\0' && !isspace(*endptr)))
|
|
exit_input_error(total+1);
|
|
|
|
// feature indices larger than those in training are not used
|
|
if(x[i].index <= nr_feature)
|
|
++i;
|
|
}
|
|
|
|
if(model_->bias>=0)
|
|
{
|
|
x[i].index = n;
|
|
x[i].value = model_->bias;
|
|
i++;
|
|
}
|
|
x[i].index = -1;
|
|
|
|
if(flag_predict_probability)
|
|
{
|
|
int j;
|
|
predict_label = predict_probability(model_,x,prob_estimates);
|
|
fprintf(output,"%d",predict_label);
|
|
for(j=0;j<model_->nr_class;j++)
|
|
fprintf(output," %g",prob_estimates[j]);
|
|
fprintf(output,"\n");
|
|
}
|
|
else
|
|
{
|
|
predict_label = predict(model_,x);
|
|
fprintf(output,"%d\n",predict_label);
|
|
}
|
|
|
|
if(predict_label == target_label)
|
|
++correct;
|
|
++total;
|
|
}
|
|
printf("Accuracy = %g%% (%d/%d)\n",(double) correct/total*100,correct,total);
|
|
if(flag_predict_probability)
|
|
free(prob_estimates);
|
|
}
|
|
|
|
void exit_with_help()
|
|
{
|
|
printf(
|
|
"Usage: predict [options] test_file model_file output_file\n"
|
|
"options:\n"
|
|
"-b probability_estimates: whether to output probability estimates, 0 or 1 (default 0)\n"
|
|
);
|
|
exit(1);
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
FILE *input, *output;
|
|
int i;
|
|
|
|
// parse options
|
|
for(i=1;i<argc;i++)
|
|
{
|
|
if(argv[i][0] != '-') break;
|
|
++i;
|
|
switch(argv[i-1][1])
|
|
{
|
|
case 'b':
|
|
flag_predict_probability = atoi(argv[i]);
|
|
break;
|
|
|
|
default:
|
|
fprintf(stderr,"unknown option: -%c\n", argv[i-1][1]);
|
|
exit_with_help();
|
|
break;
|
|
}
|
|
}
|
|
if(i>=argc)
|
|
exit_with_help();
|
|
|
|
input = fopen(argv[i],"r");
|
|
if(input == NULL)
|
|
{
|
|
fprintf(stderr,"can't open input file %s\n",argv[i]);
|
|
exit(1);
|
|
}
|
|
|
|
output = fopen(argv[i+2],"w");
|
|
if(output == NULL)
|
|
{
|
|
fprintf(stderr,"can't open output file %s\n",argv[i+2]);
|
|
exit(1);
|
|
}
|
|
|
|
if((model_=load_model(argv[i+1]))==0)
|
|
{
|
|
fprintf(stderr,"can't open model file %s\n",argv[i+1]);
|
|
exit(1);
|
|
}
|
|
|
|
x = (struct feature_node *) malloc(max_nr_attr*sizeof(struct feature_node));
|
|
do_predict(input, output, model_);
|
|
free_and_destroy_model(&model_);
|
|
free(line);
|
|
free(x);
|
|
fclose(input);
|
|
fclose(output);
|
|
return 0;
|
|
}
|
|
|