1
0
mirror of https://github.com/nmap/nmap.git synced 2025-12-06 04:31:29 +00:00
Files
nmap/nse_openssl.cc
dmiller 140dd72415 Fix build with OpenSSL 3.0
Updated all OpenSSL code to OpenSSL 3.0 API with no deprecated functions. Some
NSE functions were changed:
* openssl.rc4_options and openssl.rc4 were removed in favor of openssl.encrypt
* openssl.bignum_pseudo_rand is now an alias for openssl.bignum_rand
* openssl.bignum_is_prime and openssl.bignum_is_safe_prime will now ignore the
  nchecks parameter, using a secure default instead.
2022-08-25 14:51:59 +00:00

613 lines
19 KiB
C++

/* OpenSSL library for lua
* adapted from lmd5 library (http://www.tecgraf.puc-rio.br/~lhf/ftp/lua/)
* Original code written by Luiz Henrique de Figueiredo <lhf@tecgraf.puc-rio.br>
* Adapted for Nmap by Thomas Buchanan <tbuchanan@thecompassgrp.net>
* bignum and rand_bytes functions added by Sven Klemm <sven@c3d2.de>
* Primality tests added by Jacob Gajek <jgajek@gmail.com>
*/
#include <openssl/bn.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/hmac.h>
#include <openssl/rand.h>
#if (OPENSSL_VERSION_NUMBER >= 0x10100000L) && !defined LIBRESSL_VERSION_NUMBER
#define HAVE_OPAQUE_STRUCTS 1
#define FUNC_EVP_MD_CTX_init EVP_MD_CTX_reset
#define FUNC_EVP_MD_CTX_cleanup EVP_MD_CTX_reset
#define FUNC_EVP_CIPHER_CTX_init EVP_CIPHER_CTX_reset
#define FUNC_EVP_CIPHER_CTX_cleanup EVP_CIPHER_CTX_reset
#define PASS_EVP_CTX(ctx) (ctx)
#else
#define FUNC_EVP_MD_CTX_init EVP_MD_CTX_init
#define FUNC_EVP_MD_CTX_cleanup EVP_MD_CTX_cleanup
#define FUNC_EVP_CIPHER_CTX_init EVP_CIPHER_CTX_init
#define FUNC_EVP_CIPHER_CTX_cleanup EVP_CIPHER_CTX_cleanup
#define PASS_EVP_CTX(ctx) (&(ctx))
#endif
#include "nse_lua.h"
/* Needed for get_random_bytes */
#include <nbase.h>
#include "NmapOps.h"
#include "output.h"
extern NmapOps o;
#include "nse_openssl.h"
/* OPENSSL_API_LEVEL per OpenSSL 3.0: decimal MMmmpp */
#ifndef OPENSSL_API_LEVEL
# if OPENSSL_API_COMPAT < 0x900000L
# define OPENSSL_API_LEVEL (OPENSSL_API_COMPAT)
# else
# define OPENSSL_API_LEVEL \
(((OPENSSL_API_COMPAT >> 28) & 0xF) * 10000 \
+ ((OPENSSL_API_COMPAT >> 20) & 0xFF) * 100 \
+ ((OPENSSL_API_COMPAT >> 12) & 0xFF))
# endif
#endif
#if OPENSSL_API_LEVEL >= 30000
#include <openssl/provider.h>
#endif
#define NSE_SSL_LUA_ERR(_L) \
luaL_error(_L, "OpenSSL error: %s", ERR_error_string(ERR_get_error(), NULL))
typedef struct bignum_data {
BIGNUM * bn;
bool should_free;
} bignum_data_t;
static int nse_pushbn( lua_State *L, BIGNUM *num)
{
bignum_data_t * data = (bignum_data_t *) lua_newuserdata( L, sizeof(bignum_data_t));
luaL_getmetatable( L, "BIGNUM" );
lua_setmetatable( L, -2 );
data->bn = num;
/* Currently this is true for all uses in this file. */
data->should_free = true;
return 1;
}
static int l_bignum_bin2bn( lua_State *L ) /** bignum_bin2bn( string s ) */
{
size_t len;
const unsigned char * s = (unsigned char *) luaL_checklstring( L, 1, &len );
BIGNUM * num = BN_new();
BN_bin2bn( s, len, num );
return nse_pushbn(L, num);
}
static int l_bignum_dec2bn( lua_State *L ) /** bignum_dec2bn( string s ) */
{
const char * s = luaL_checkstring( L, 1 );
BIGNUM * num = BN_new();
BN_dec2bn( &num, s );
return nse_pushbn(L, num);
}
static int l_bignum_hex2bn( lua_State *L ) /** bignum_hex2bn( string s ) */
{
const char * s = luaL_checkstring( L, 1 );
BIGNUM * num = BN_new();
BN_hex2bn( &num, s );
return nse_pushbn(L, num);
}
static int l_bignum_rand( lua_State *L ) /** bignum_rand( number bits ) */
{
size_t bits = luaL_checkinteger( L, 1 );
BIGNUM * num = BN_new();
BN_rand( num, bits, -1, 0 );
return nse_pushbn(L, num);
}
static int l_bignum_mod_exp( lua_State *L ) /** bignum_mod_exp( BIGNUM a, BIGNUM p, BIGNUM m ) */
{
bignum_data_t * a = (bignum_data_t *) luaL_checkudata(L, 1, "BIGNUM");
bignum_data_t * p = (bignum_data_t *) luaL_checkudata(L, 2, "BIGNUM");
bignum_data_t * m = (bignum_data_t *) luaL_checkudata(L, 3, "BIGNUM");
BIGNUM * result = BN_new();
BN_CTX * ctx = BN_CTX_new();
BN_mod_exp( result, a->bn, p->bn, m->bn, ctx );
BN_CTX_free( ctx );
return nse_pushbn(L, result);
}
static int l_bignum_div( lua_State *L ) /* bignum_div( BIGNUM a, BIGNUM d ) */
{
bignum_data_t * a = (bignum_data_t *) luaL_checkudata(L, 1, "BIGNUM");
bignum_data_t * d = (bignum_data_t *) luaL_checkudata(L, 2, "BIGNUM");
BIGNUM * dv = BN_new();
BIGNUM * rem = BN_new();
BN_CTX * ctx = BN_CTX_new();
BN_div(dv, rem, a->bn, d->bn, ctx);
BN_CTX_free( ctx );
nse_pushbn(L, dv);
nse_pushbn(L, rem);
return 2;
}
static int l_bignum_add( lua_State *L ) /** bignum_add( BIGNUM a, BIGNUM b ) */
{
bignum_data_t * a = (bignum_data_t *) luaL_checkudata(L, 1, "BIGNUM");
bignum_data_t * b = (bignum_data_t *) luaL_checkudata(L, 2, "BIGNUM");
BIGNUM * result = BN_new();
BN_add( result, a->bn, b->bn );
return nse_pushbn(L, result);
}
static int l_bignum_num_bits( lua_State *L ) /** bignum_num_bits( BIGNUM bn ) */
{
bignum_data_t * userdata = (bignum_data_t *) luaL_checkudata(L, 1, "BIGNUM");
lua_pushinteger( L, BN_num_bits( userdata->bn) );
return 1;
}
static int l_bignum_num_bytes( lua_State *L ) /** bignum_num_bytes( BIGNUM bn ) */
{
bignum_data_t * userdata = (bignum_data_t *) luaL_checkudata(L, 1, "BIGNUM");
lua_pushinteger( L, BN_num_bytes( userdata->bn) );
return 1;
}
static int l_bignum_set_bit( lua_State *L ) /** bignum_set_bit( BIGNUM bn, number position ) */
{
bignum_data_t * userdata = (bignum_data_t *) luaL_checkudata(L, 1, "BIGNUM");
int position = luaL_checkinteger( L, 2 );
BN_set_bit( userdata->bn, position );
return 0;
}
static int l_bignum_clear_bit( lua_State *L ) /** bignum_clear_bit( BIGNUM bn, number position ) */
{
bignum_data_t * userdata = (bignum_data_t *) luaL_checkudata(L, 1, "BIGNUM");
int position = luaL_checkinteger( L, 2 );
BN_clear_bit( userdata->bn, position );
return 0;
}
static int l_bignum_is_bit_set( lua_State *L ) /** bignum_set_bit( BIGNUM bn, number position ) */
{
bignum_data_t * userdata = (bignum_data_t *) luaL_checkudata(L, 1, "BIGNUM");
int position = luaL_checkinteger( L, 2 );
lua_pushboolean( L, BN_is_bit_set( userdata->bn, position ) );
return 1;
}
static int l_bignum_is_prime( lua_State *L ) /** bignum_is_prime( BIGNUM p ) */
{
bignum_data_t * p = (bignum_data_t *) luaL_checkudata( L, 1, "BIGNUM" );
BN_CTX * ctx = BN_CTX_new();
int is_prime =
#if OPENSSL_API_LEVEL < 30000
BN_is_prime_ex( p->bn, BN_prime_checks, ctx, NULL );
#else
BN_check_prime( p->bn, ctx, NULL );
#endif
BN_CTX_free( ctx );
lua_pushboolean( L, is_prime );
return 1;
}
static int l_bignum_is_safe_prime( lua_State *L ) /** bignum_is_safe_prime( BIGNUM p ) */
{
bignum_data_t * p = (bignum_data_t *) luaL_checkudata( L, 1, "BIGNUM" );
BN_CTX * ctx = BN_CTX_new();
int is_prime =
#if OPENSSL_API_LEVEL < 30000
BN_is_prime_ex( p->bn, BN_prime_checks, ctx, NULL );
#else
BN_check_prime( p->bn, ctx, NULL );
#endif
int is_safe = 0;
if (is_prime) {
BIGNUM * n = BN_dup( p->bn );
BN_sub_word( n, (BN_ULONG)1 );
BN_div_word( n, (BN_ULONG)2 );
is_safe =
#if OPENSSL_API_LEVEL < 30000
BN_is_prime_ex( n, BN_prime_checks, ctx, NULL );
#else
BN_check_prime( n, ctx, NULL );
#endif
BN_clear_free( n );
}
BN_CTX_free( ctx );
lua_pushboolean( L, is_safe );
lua_pushboolean( L, is_prime );
return 2;
}
static int l_bignum_bn2bin( lua_State *L ) /** bignum_bn2bin( BIGNUM bn ) */
{
bignum_data_t * userdata = (bignum_data_t *) luaL_checkudata(L, 1, "BIGNUM");
unsigned char * result = (unsigned char *) malloc( BN_num_bytes( userdata->bn ) );
if (!result) return luaL_error( L, "Couldn't allocate memory.");
int len = BN_bn2bin( userdata->bn, result );
lua_pushlstring( L, (char *) result, len );
free( result );
return 1;
}
static int l_bignum_bn2dec( lua_State *L ) /** bignum_bn2dec( BIGNUM bn ) */
{
bignum_data_t * userdata = (bignum_data_t *) luaL_checkudata(L, 1, "BIGNUM");
char * result = BN_bn2dec( userdata->bn );
lua_pushstring( L, result );
OPENSSL_free( result );
return 1;
}
static int l_bignum_bn2hex( lua_State *L ) /** bignum_bn2hex( BIGNUM bn ) */
{
bignum_data_t * userdata = (bignum_data_t *) luaL_checkudata(L, 1, "BIGNUM");
char * result = BN_bn2hex( userdata->bn );
lua_pushstring( L, result );
OPENSSL_free( result );
return 1;
}
static int l_bignum_free( lua_State *L ) /** bignum_free( bignum ) */
{
bignum_data_t * userdata = (bignum_data_t *) luaL_checkudata(L, 1, "BIGNUM");
if (userdata->should_free) {
BN_clear_free( userdata->bn );
}
return 0;
}
static int l_rand_bytes( lua_State *L ) /** rand_bytes( number bytes ) */
{
size_t len = luaL_checkinteger( L, 1 );
unsigned char * result = (unsigned char *) malloc( len );
if (!result) return luaL_error( L, "Couldn't allocate memory.");
if (RAND_bytes( result, len ) != 1) {
return luaL_error(L, "Failure in RAND_bytes.");
}
lua_pushlstring( L, (char *) result, len );
free( result );
return 1;
}
static int l_rand_pseudo_bytes( lua_State *L ) /** rand_pseudo_bytes( number bytes ) */
{
size_t len = luaL_checkinteger( L, 1 );
unsigned char * result = (unsigned char *) malloc( len );
if (!result) return luaL_error( L, "Couldn't allocate memory.");
get_random_bytes( result, len );
lua_pushlstring( L, (char *) result, len );
free( result );
return 1;
}
static int l_digest(lua_State *L) /** digest(string algorithm, string message) */
{
size_t msg_len;
unsigned int digest_len;
const char *algorithm = luaL_checkstring( L, 1 );
const unsigned char *msg = (unsigned char *) luaL_checklstring( L, 2, &msg_len );
unsigned char digest[EVP_MAX_MD_SIZE];
const EVP_MD * evp_md;
#if HAVE_OPAQUE_STRUCTS
EVP_MD_CTX *mdctx = EVP_MD_CTX_new();
#else
EVP_MD_CTX mdctx;
#endif
evp_md = EVP_get_digestbyname( algorithm );
if (!evp_md) return luaL_error( L, "Unknown digest algorithm: %s", algorithm );
FUNC_EVP_MD_CTX_init(PASS_EVP_CTX(mdctx));
if (!(
EVP_DigestInit_ex( PASS_EVP_CTX(mdctx), evp_md, NULL ) &&
EVP_DigestUpdate( PASS_EVP_CTX(mdctx), msg, msg_len ) &&
EVP_DigestFinal_ex( PASS_EVP_CTX(mdctx), digest, &digest_len ))) {
FUNC_EVP_MD_CTX_cleanup( PASS_EVP_CTX(mdctx) );
return NSE_SSL_LUA_ERR(L);
}
FUNC_EVP_MD_CTX_cleanup( PASS_EVP_CTX(mdctx) );
lua_pushlstring( L, (char *) digest, digest_len );
return 1;
}
/** md4(string s) */
#define NSE_DECLARE_DIGEST(_mdname) \
static int l_##_mdname(lua_State *L) \
{ \
lua_pushliteral(L, #_mdname); \
lua_insert(L, 1); \
return l_digest(L); \
}
NSE_DECLARE_DIGEST(md4)
NSE_DECLARE_DIGEST(md5)
NSE_DECLARE_DIGEST(sha1)
NSE_DECLARE_DIGEST(ripemd160)
static int l_hmac(lua_State *L) /** hmac(string algorithm, string key, string message) */
{
size_t key_len, msg_len;
unsigned int digest_len;
const char *algorithm = luaL_checkstring( L, 1 );
const unsigned char *key = (unsigned char *) luaL_checklstring( L, 2, &key_len );
const unsigned char *msg = (unsigned char *) luaL_checklstring( L, 3, &msg_len );
unsigned char digest[EVP_MAX_MD_SIZE];
const EVP_MD * evp_md;
evp_md = EVP_get_digestbyname( algorithm );
if (!evp_md) return luaL_error( L, "Unknown digest algorithm: %s", algorithm );
HMAC( evp_md, key, key_len, msg, msg_len, digest, &digest_len );
lua_pushlstring( L, (char *) digest, digest_len );
return 1;
}
struct enumerator_data {
lua_State * L;
int index;
};
static void enumerate_algorithms( const OBJ_NAME * name, void * arg )
{
struct enumerator_data* data = (struct enumerator_data *) arg;
lua_pushstring( data->L, name->name );
lua_rawseti( data->L, -2, data->index );
data->index++;
}
static int l_supported_digests(lua_State *L) /** supported_digests() */
{
enumerator_data data;
data.L = L;
data.index = 1;
lua_newtable( L );
OBJ_NAME_do_all_sorted( OBJ_NAME_TYPE_MD_METH,enumerate_algorithms, &data );
return 1;
}
static int l_supported_ciphers(lua_State *L) /** supported_ciphers() */
{
enumerator_data data;
data.L = L;
data.index = 1;
lua_newtable( L );
OBJ_NAME_do_all_sorted( OBJ_NAME_TYPE_CIPHER_METH,enumerate_algorithms, &data );
return 1;
}
static int l_encrypt(lua_State *L) /** encrypt( string algorithm, string key, string iv, string data, bool padding = false ) */
{
const char *algorithm = luaL_checkstring( L, 1 );
const EVP_CIPHER * evp_cipher = EVP_get_cipherbyname( algorithm );
if (!evp_cipher) return luaL_error( L, "Unknown cipher algorithm: %s", algorithm );
size_t key_len, iv_len, data_len;
const unsigned char *key = (unsigned char *) luaL_checklstring( L, 2, &key_len );
const unsigned char *iv = (unsigned char *) luaL_optlstring( L, 3, "", &iv_len );
const unsigned char *data = (unsigned char *) luaL_checklstring( L, 4, &data_len );
int padding = lua_toboolean( L, 5 );
if (iv[0] == '\0')
iv = NULL;
#if HAVE_OPAQUE_STRUCTS
EVP_CIPHER_CTX *cipher_ctx = EVP_CIPHER_CTX_new();
#else
EVP_CIPHER_CTX cipher_ctx;
#endif
FUNC_EVP_CIPHER_CTX_init( PASS_EVP_CTX(cipher_ctx) );
/* First create the cipher context, then set the key length and padding, and
check the iv length. Below we set the key and iv. */
if (!(
EVP_EncryptInit_ex( PASS_EVP_CTX(cipher_ctx), evp_cipher, NULL, NULL, NULL ) &&
EVP_CIPHER_CTX_set_key_length( PASS_EVP_CTX(cipher_ctx), key_len ) &&
EVP_CIPHER_CTX_set_padding( PASS_EVP_CTX(cipher_ctx), padding ))) {
return NSE_SSL_LUA_ERR(L);
}
if (iv != NULL && (int) iv_len != EVP_CIPHER_CTX_iv_length( PASS_EVP_CTX(cipher_ctx) )) {
return luaL_error( L, "Length of iv is %d; should be %d",
(int) iv_len, EVP_CIPHER_CTX_iv_length( PASS_EVP_CTX(cipher_ctx) ));
}
int out_len, final_len;
unsigned char * out = (unsigned char *) malloc( data_len + EVP_MAX_BLOCK_LENGTH );
if (!out) return luaL_error( L, "Couldn't allocate memory.");
if (!(
EVP_EncryptInit_ex( PASS_EVP_CTX(cipher_ctx), NULL, NULL, key, iv ) &&
EVP_EncryptUpdate( PASS_EVP_CTX(cipher_ctx), out, &out_len, data, data_len ) &&
EVP_EncryptFinal_ex( PASS_EVP_CTX(cipher_ctx), out + out_len, &final_len ) )) {
FUNC_EVP_CIPHER_CTX_cleanup( PASS_EVP_CTX(cipher_ctx) );
free( out );
return NSE_SSL_LUA_ERR(L);
}
lua_pushlstring( L, (char *) out, out_len + final_len );
FUNC_EVP_CIPHER_CTX_cleanup( PASS_EVP_CTX(cipher_ctx) );
free( out );
return 1;
}
static int l_decrypt(lua_State *L) /** decrypt( string algorithm, string key, string iv, string data, bool padding = false ) */
{
const char *algorithm = luaL_checkstring( L, 1 );
const EVP_CIPHER * evp_cipher = EVP_get_cipherbyname( algorithm );
if (!evp_cipher) return luaL_error( L, "Unknown cipher algorithm: %s", algorithm );
size_t key_len, iv_len, data_len;
const unsigned char *key = (unsigned char *) luaL_checklstring( L, 2, &key_len );
const unsigned char *iv = (unsigned char *) luaL_optlstring( L, 3, "", &iv_len );
const unsigned char *data = (unsigned char *) luaL_checklstring( L, 4, &data_len );
int padding = lua_toboolean( L, 5 );
if (iv[0] == '\0')
iv = NULL;
#if HAVE_OPAQUE_STRUCTS
EVP_CIPHER_CTX *cipher_ctx = EVP_CIPHER_CTX_new();
#else
EVP_CIPHER_CTX cipher_ctx;
#endif
FUNC_EVP_CIPHER_CTX_init( PASS_EVP_CTX(cipher_ctx) );
if (!(
EVP_DecryptInit_ex( PASS_EVP_CTX(cipher_ctx), evp_cipher, NULL, NULL, NULL ) &&
EVP_CIPHER_CTX_set_key_length( PASS_EVP_CTX(cipher_ctx), key_len ) &&
EVP_CIPHER_CTX_set_padding( PASS_EVP_CTX(cipher_ctx), padding ))) {
return NSE_SSL_LUA_ERR(L);
}
if (iv != NULL && (int) iv_len != EVP_CIPHER_CTX_iv_length( PASS_EVP_CTX(cipher_ctx) )) {
return luaL_error( L, "Length of iv is %d; should be %d",
(int) iv_len, EVP_CIPHER_CTX_iv_length( PASS_EVP_CTX(cipher_ctx) ));
}
int out_len, final_len;
unsigned char * out = (unsigned char *) malloc( data_len );
if (!out) return luaL_error( L, "Couldn't allocate memory.");
if (!(
EVP_DecryptInit_ex( PASS_EVP_CTX(cipher_ctx), NULL, NULL, key, iv ) &&
EVP_DecryptUpdate( PASS_EVP_CTX(cipher_ctx), out, &out_len, data, data_len ) &&
EVP_DecryptFinal_ex( PASS_EVP_CTX(cipher_ctx), out + out_len, &final_len ) )) {
FUNC_EVP_CIPHER_CTX_cleanup( PASS_EVP_CTX(cipher_ctx) );
free( out );
return NSE_SSL_LUA_ERR(L);
}
lua_pushlstring( L, (char *) out, out_len + final_len );
FUNC_EVP_CIPHER_CTX_cleanup( PASS_EVP_CTX(cipher_ctx) );
free( out );
return 1;
}
static int l_DES_string_to_key(lua_State *L) /** DES_string_to_key( string data ) */
{
size_t len;
const unsigned char *data = (unsigned char *) luaL_checklstring( L, 1, &len );
if (len != 7 )
return luaL_error( L, "String must have length of 7 bytes." );
unsigned char key[8] = {0};
// key is each 7 bits of data separated by 0 bit
// Clear the lsb of the first byte:
key[0] = data[0] & ~1;
// Least significant i bits of i-1 byte plus most significant 8-i bits of i-th byte
// clearing the lsb of result to keep only the 7-i bits of i-th byte
for( int i = 1; i < 8; i++ )
key[i] = (data[i-1] << (8-i) | data[i] >> i) & ~1;
// DES_set_odd_parity( &key ); // lgtm [cpp/weak-cryptographic-algorithm]
lua_pushlstring( L, (char *) key, 8 );
return 1;
}
static const struct luaL_Reg bignum_methods[] = {
{ "num_bits", l_bignum_num_bits },
{ "num_bytes", l_bignum_num_bytes },
{ "tobin", l_bignum_bn2bin },
{ "todec", l_bignum_bn2dec },
{ "tohex", l_bignum_bn2hex },
{ "is_bit_set", l_bignum_is_bit_set },
{ "set_bit", l_bignum_set_bit },
{ "clear_bit", l_bignum_clear_bit },
{ "is_bit_set", l_bignum_is_bit_set },
{ "is_prime", l_bignum_is_prime },
{ "is_safe_prime", l_bignum_is_safe_prime },
{ "__gc", l_bignum_free },
{ NULL, NULL }
};
static const struct luaL_Reg openssllib[] = {
{ "bignum_num_bits", l_bignum_num_bits },
{ "bignum_num_bytes", l_bignum_num_bytes },
{ "bignum_set_bit", l_bignum_set_bit },
{ "bignum_clear_bit", l_bignum_clear_bit },
{ "bignum_is_bit_set", l_bignum_is_bit_set },
{ "bignum_is_prime", l_bignum_is_prime },
{ "bignum_is_safe_prime", l_bignum_is_safe_prime },
{ "bignum_bin2bn", l_bignum_bin2bn },
{ "bignum_dec2bn", l_bignum_dec2bn },
{ "bignum_hex2bn", l_bignum_hex2bn },
{ "bignum_rand", l_bignum_rand },
{ "bignum_pseudo_rand", l_bignum_rand },
{ "bignum_bn2bin", l_bignum_bn2bin },
{ "bignum_bn2dec", l_bignum_bn2dec },
{ "bignum_bn2hex", l_bignum_bn2hex },
{ "bignum_add", l_bignum_add },
{ "bignum_mod_exp", l_bignum_mod_exp },
{ "bignum_div", l_bignum_div },
{ "rand_bytes", l_rand_bytes },
{ "rand_pseudo_bytes", l_rand_pseudo_bytes },
// These functions declared above with NSE_DECLARE_DIGEST
{ "md4", l_md4 },
{ "md5", l_md5 },
{ "sha1", l_sha1 },
{ "ripemd160", l_ripemd160 },
{ "digest", l_digest },
{ "hmac", l_hmac },
{ "encrypt", l_encrypt },
{ "decrypt", l_decrypt },
{ "DES_string_to_key", l_DES_string_to_key },
{ "supported_digests", l_supported_digests },
{ "supported_ciphers", l_supported_ciphers },
{ NULL, NULL }
};
LUALIB_API int luaopen_openssl(lua_State *L) {
#if OPENSSL_VERSION_NUMBER < 0x10100000L || defined LIBRESSL_VERSION_NUMBER
OpenSSL_add_all_algorithms();
ERR_load_crypto_strings();
#elif OPENSSL_API_LEVEL >= 30000
if (NULL == OSSL_PROVIDER_load(NULL, "legacy") && o.verbose)
{
log_write(LOG_STDOUT, "%s: OpenSSL legacy provider failed to load.\n", SCRIPT_ENGINE);
}
if (NULL == OSSL_PROVIDER_load(NULL, "default") && o.verbose)
{
log_write(LOG_STDOUT, "%s: OpenSSL default provider failed to load.\n", SCRIPT_ENGINE);
}
#endif
luaL_newlib(L, openssllib);
// create metatable for bignum
luaL_newmetatable( L, "BIGNUM" );
// metatable.__index = metatable
lua_pushvalue( L, -1 );
lua_setfield( L, -2, "__index" );
// metatable.__tostring = bignum_bn2hex
lua_pushcfunction( L, l_bignum_bn2hex );
lua_setfield( L, -2, "__tostring" );
// register methods
luaL_setfuncs(L, bignum_methods, 0);
lua_pop( L, 1 ); // BIGNUM
return 1;
}