mirror of
https://github.com/nmap/nmap.git
synced 2025-12-06 04:31:29 +00:00
All fixes made by hand. A couple real bugs/errors fixed, due to copy-paste of code from other scripts without changing variable names.
127 lines
3.5 KiB
Lua
127 lines
3.5 KiB
Lua
---
|
|
-- Formula functions for various calculations.
|
|
--
|
|
-- The library lets scripts to use common mathematical functions to compute percentages,
|
|
-- averages, entropy, randomness and other calculations. Scripts that generate statistics
|
|
-- and metrics can also make use of this library.
|
|
--
|
|
-- Functions included:
|
|
--
|
|
-- <code>calcPwdEntropy</code> - Calculate the entropy of a password. A random
|
|
-- password's information entropy, H, is given by the formula: H = L * (logN) / (log2),
|
|
-- where N is the number of possible symbols and L is the number of symbols in the
|
|
-- password. Based on https://en.wikipedia.org/wiki/Password_strength
|
|
--
|
|
-- <code>looksRandom</code> - Returns true if the value looks random.
|
|
--
|
|
-- @copyright Same as Nmap--See http://nmap.org/book/man-legal.html
|
|
---
|
|
|
|
local bin = require "bin"
|
|
local math = require "math"
|
|
local stdnse = require "stdnse"
|
|
local string = require "string"
|
|
local table = require "table"
|
|
|
|
_ENV = stdnse.module("formulas", stdnse.seeall)
|
|
|
|
calcPwdEntropy = function(value)
|
|
|
|
local total, hasdigit, haslower, hasupper, hasspaces = 0, 0, 0, 0, false
|
|
|
|
if string.find(value, "%d") then
|
|
hasdigit = 1
|
|
end
|
|
if string.find(value, "%l") then
|
|
haslower = 1
|
|
end
|
|
if string.find(value, "%u") then
|
|
hasupper = 1
|
|
end
|
|
if string.find(value, ' ') then
|
|
hasspaces = true
|
|
end
|
|
|
|
-- The values 10, 26, 26 have been taken from Wikipedia's entropy table.
|
|
local total = hasdigit * 10 + hasupper * 26 + haslower * 26
|
|
local entropy = math.floor(math.log(total) * #value / math.log(2))
|
|
|
|
return entropy
|
|
end
|
|
|
|
-- A chi-square test for the null hypothesis that the members of data are drawn
|
|
-- from a uniform distribution over num_cats categories.
|
|
local function chi2(data, num_cats)
|
|
local bins = {}
|
|
local x2, delta, expected
|
|
|
|
for _, x in ipairs(data) do
|
|
bins[x] = bins[x] or 0
|
|
bins[x] = bins[x] + 1
|
|
end
|
|
|
|
expected = #data / num_cats
|
|
x2 = 0.0
|
|
for _, n in pairs(bins) do
|
|
delta = n - expected
|
|
x2 = x2 + delta * delta
|
|
end
|
|
x2 = x2 / expected
|
|
|
|
return x2
|
|
end
|
|
|
|
-- Split a string into a sequence of bit strings of the given length.
|
|
-- splitbits("abc", 5) --> {"01100", "00101", "10001", "00110"}
|
|
-- Any short final group is omitted.
|
|
local function splitbits(s, n)
|
|
local seq
|
|
|
|
local _, bits = bin.unpack("B" .. #s, s)
|
|
seq = {}
|
|
for i = 1, #bits - n, n do
|
|
seq[#seq + 1] = bits:sub(i, i + n - 1)
|
|
end
|
|
|
|
return seq
|
|
end
|
|
|
|
-- chi-square cdf table at 0.95 confidence for different degrees of freedom.
|
|
-- >>> import scipy.stats, scipy.optimize
|
|
-- >>> scipy.optimize.newton(lambda x: scipy.stats.chi2(dof).cdf(x) - 0.95, dof)
|
|
local CHI2_CDF = {
|
|
[3] = 7.8147279032511738,
|
|
[15] = 24.99579013972863,
|
|
[255] = 293.2478350807001,
|
|
}
|
|
|
|
function looksRandom(data)
|
|
local x2
|
|
|
|
-- Because our sample is so small (only 16 bytes), do a chi-square
|
|
-- goodness of fit test across groups of 2, 4, and 8 bits. If using only
|
|
-- 8 bits, for example, any sample whose bytes are all different would
|
|
-- pass the test. Using 2 bits will tend to catch things like pure
|
|
-- ASCII, where one out of every four samples never has its high bit
|
|
-- set.
|
|
|
|
x2 = chi2(splitbits(data, 2), 4)
|
|
if x2 > CHI2_CDF[3] then
|
|
return false
|
|
end
|
|
|
|
x2 = chi2(splitbits(data, 4), 16)
|
|
if x2 > CHI2_CDF[15] then
|
|
return false
|
|
end
|
|
|
|
x2 = chi2({string.byte(data, 1, -1)}, 256)
|
|
if x2 > CHI2_CDF[255] then
|
|
return false
|
|
end
|
|
|
|
return true
|
|
end
|
|
|
|
return _ENV
|