1
0
mirror of https://github.com/nmap/nmap.git synced 2026-02-03 03:59:02 +00:00
Files
nmap/nsock/src/nsock_core.c
david ed2ba4e168 Copy nping, nsock, nbase, zenmap, ncat from their homes in /.
If you have trouble updating after this revision you need to follow
these instructions. You have probably just seen an error like this:

svn: URL 'svn://svn.insecure.org/nping' of existing directory 'nping'
does not match expected URL 'svn://svn.insecure.org/nmap/nping'

This is caused by the replacement of SVN externals.

Here's what you need to do. First, save any local changes you might have
in the nping, nsock, nbase, ncat, and zenmap directories. (For example
by running "cd nping; svn diff > ../nping.diff".) If you don't have any
local changes you can skip this step.

Then run these commands:

rm -rf nping/ nsock/ nbase/ ncat/ zenmap/
svn update
svn cleanup

If all else fails, you can just delete your whole working directory and
check out anew:

svn co --username guest --password "" svn://svn.insecure.org/nmap

There may be further discussion in the mailing list thread at
http://seclists.org/nmap-dev/2011/q4/303.
2011-11-16 21:49:44 +00:00

1384 lines
48 KiB
C

/***************************************************************************
* nsock_core.c -- This contains the core engine routines for the nsock *
* parallel socket event library. *
* *
***********************IMPORTANT NSOCK LICENSE TERMS***********************
* *
* The nsock parallel socket event library is (C) 1999-2011 Insecure.Com *
* LLC This library is free software; you may redistribute and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; Version 2. This guarantees *
* your right to use, modify, and redistribute this software under certain *
* conditions. If this license is unacceptable to you, Insecure.Com LLC *
* may be willing to sell alternative licenses (contact *
* sales@insecure.com ). *
* *
* As a special exception to the GPL terms, Insecure.Com LLC grants *
* permission to link the code of this program with any version of the *
* OpenSSL library which is distributed under a license identical to that *
* listed in the included docs/licenses/OpenSSL.txt file, and distribute *
* linked combinations including the two. You must obey the GNU GPL in all *
* respects for all of the code used other than OpenSSL. If you modify *
* this file, you may extend this exception to your version of the file, *
* but you are not obligated to do so. *
* *
* If you received these files with a written license agreement stating *
* terms other than the (GPL) terms above, then that alternative license *
* agreement takes precedence over this comment. *
* *
* Source is provided to this software because we believe users have a *
* right to know exactly what a program is going to do before they run it. *
* This also allows you to audit the software for security holes (none *
* have been found so far). *
* *
* Source code also allows you to port Nmap to new platforms, fix bugs, *
* and add new features. You are highly encouraged to send your changes *
* to nmap-dev@insecure.org for possible incorporation into the main *
* distribution. By sending these changes to Fyodor or one of the *
* Insecure.Org development mailing lists, it is assumed that you are *
* offering the Nmap Project (Insecure.Com LLC) the unlimited, *
* non-exclusive right to reuse, modify, and relicense the code. Nmap *
* will always be available Open Source, but this is important because the *
* inability to relicense code has caused devastating problems for other *
* Free Software projects (such as KDE and NASM). We also occasionally *
* relicense the code to third parties as discussed above. If you wish to *
* specify special license conditions of your contributions, just say so *
* when you send them. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License v2.0 for more details *
* (http://www.gnu.org/licenses/gpl-2.0.html). *
* *
***************************************************************************/
/* $Id$ */
#include "nsock_internal.h"
#include "gh_list.h"
#include "filespace.h"
#include <assert.h>
#if HAVE_ERRNO_H
#include <errno.h>
#endif
#if HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif
#if HAVE_SYS_SOCKET_H
#include <sys/socket.h>
#endif
#if HAVE_NETINET_IN_H
#include <netinet/in.h>
#endif
#if HAVE_ARPA_INET_H
#include <arpa/inet.h>
#endif
#if HAVE_STRING_H
#include <string.h>
#endif
#include "netutils.h"
#if HAVE_PCAP
#include "nsock_pcap.h"
static int pcap_read_on_nonselect(mspool *nsp);
#endif
/* Nsock time of day -- we update this at least once per
nsock_loop round (and after most calls that are likely to block).
Other nsock files should grab this
*/
struct timeval nsock_tod;
#ifdef WIN32
#define CHECKED_FD_SET FD_SET
#else
#define CHECKED_FD_SET(fd, set) \
do { \
if ((fd) < FD_SETSIZE) { \
FD_SET((fd), (set)); \
} else { \
fatal("%s:%ld: Attempt to FD_SET fd %d, which is not less than" \
" FD_SETSIZE (%d). Try using a lower parallelism.", \
__FILE__, __LINE__, (fd), FD_SETSIZE); \
} \
} while (0)
#endif
#ifdef WIN32
#define CHECKED_FD_CLR FD_CLR
#else
#define CHECKED_FD_CLR(fd, set) \
do { \
if ((fd) < FD_SETSIZE) { \
FD_CLR((fd), (set)); \
} else { \
fatal("%s:%ld: Attempt to FD_CLR fd %d, which is not less than" \
" FD_SETSIZE (%d). Try using a lower parallelism.", \
__FILE__, __LINE__, (fd), FD_SETSIZE); \
} \
} while (0)
#endif
/* These macros construct the bodies of the socket_count_*_{inc,dec} functions. */
#define SOCKET_COUNT_INC(sd, count, fdset, max_sd) \
do { \
assert((count) >= 0); \
(count)++; \
CHECKED_FD_SET((sd), (fdset)); \
(max_sd) = MAX((max_sd), (sd)); \
return 1; \
} while (0)
#define SOCKET_COUNT_DEC(sd, count, fdset, max_sd, iod) \
do { \
assert((count) > 0); \
(count)--; \
if ((count) == 0) { \
CHECKED_FD_CLR((sd), (fdset)); \
assert((iod)->events_pending > 0); \
if ((iod)->events_pending == 1 && (max_sd) == (sd)) \
(max_sd)--; \
} \
return (count) != 0; \
} while (0)
/* Each iod has a count of pending socket reads, socket writes, and pcap reads.
When a descriptor's count is nonzero, its bit must be set in the appropriate
master fd_set, and when the count is zero the bit must be cleared. What we
are simulating is an fd_set with a counter for each socket instead of just an
on/off switch. The fd_set's bits aren't enough by itself because a descriptor
may for example have two reads pending at once, and the bit must not be
cleared after the first is completed. The socket_count_* functions take care
of keeping the fd_sets in sync when the counts change. */
int socket_count_zero(msiod *iod, mspool *ms) {
iod->readsd_count = 0;
iod->writesd_count = 0;
iod->readpcapsd_count = 0;
#if HAVE_PCAP
if (iod->pcap) {
int sd = ((mspcap *) iod->pcap)->pcap_desc;
if (sd >= 0) {
CHECKED_FD_CLR(sd, &ms->mioi.fds_master_r);
CHECKED_FD_CLR(sd, &ms->mioi.fds_results_r);
}
} else
#endif
{
CHECKED_FD_CLR(iod->sd, &ms->mioi.fds_master_r);
CHECKED_FD_CLR(iod->sd, &ms->mioi.fds_master_w);
CHECKED_FD_CLR(iod->sd, &ms->mioi.fds_results_r);
CHECKED_FD_CLR(iod->sd, &ms->mioi.fds_results_w);
}
if (iod->events_pending == 1 && ms->mioi.max_sd == iod->sd)
ms->mioi.max_sd--;
return 0;
}
static int socket_count_read_inc(msiod *iod, mspool *ms)
{
SOCKET_COUNT_INC(iod->sd, iod->readsd_count, &ms->mioi.fds_master_r, ms->mioi.max_sd);
}
static int socket_count_read_dec(msiod *iod, mspool *ms) {
SOCKET_COUNT_DEC(iod->sd, iod->readsd_count, &ms->mioi.fds_master_r, ms->mioi.max_sd, iod);
}
static int socket_count_write_inc(msiod *iod, mspool *ms)
{
SOCKET_COUNT_INC(iod->sd, iod->writesd_count, &ms->mioi.fds_master_w, ms->mioi.max_sd);
}
static int socket_count_write_dec(msiod *iod, mspool *ms) {
SOCKET_COUNT_DEC(iod->sd, iod->writesd_count, &ms->mioi.fds_master_w, ms->mioi.max_sd, iod);
}
#if HAVE_PCAP
static int socket_count_readpcap_inc(msiod *iod, mspool *ms)
{
SOCKET_COUNT_INC(((mspcap *) iod->pcap)->pcap_desc, iod->readpcapsd_count, &ms->mioi.fds_master_r, ms->mioi.max_sd);
}
static int socket_count_readpcap_dec(msiod *iod, mspool *ms) {
SOCKET_COUNT_DEC(((mspcap *) iod->pcap)->pcap_desc, iod->readpcapsd_count, &ms->mioi.fds_master_r, ms->mioi.max_sd, iod);
}
#endif
#if HAVE_OPENSSL
/* Call socket_count_read_dec or socket_count_write_dec on nse->iod depending on
the current value of nse->sslinfo.ssl_desire. */
static int socket_count_dec_ssl_desire(msevent *nse, mspool *ms)
{
assert(nse->iod->ssl != NULL &&
(nse->sslinfo.ssl_desire == SSL_ERROR_WANT_READ ||
nse->sslinfo.ssl_desire == SSL_ERROR_WANT_WRITE));
if (nse->sslinfo.ssl_desire == SSL_ERROR_WANT_READ)
return socket_count_read_dec(nse->iod, ms);
else
return socket_count_write_dec(nse->iod, ms);
}
#endif
/* Returns -1 (and sets ms->errno if there is an error so severe that
we might as well quit waiting and have nsock_loop() return an error */
static int wait_for_events(mspool *ms, int msec_timeout) {
int event_msecs; /* Msecs before an event goes off */
int combined_msecs;
int sock_err = 0;
struct timeval select_tv;
struct timeval *select_tv_p;
assert(msec_timeout >= -1);
if (ms->evl.events_pending == 0)
return 0; /* No need to wait on 0 events ... */
do {
if (ms->tracelevel > 3)
nsock_trace(ms, "wait_for_events");
if (ms->evl.next_ev.tv_sec == 0) {
event_msecs = -1; /* None of the events specified a timeout */
} else {
event_msecs = MAX(0, TIMEVAL_MSEC_SUBTRACT(ms->evl.next_ev, nsock_tod));
}
#if HAVE_PCAP
#ifndef PCAP_CAN_DO_SELECT
/* Force a low timeout when capturing packets on systems where
* the pcap descriptor is not select()able. */
if (ms->evl.pcap_read_events.count > 0) {
if (event_msecs > PCAP_POLL_INTERVAL)
event_msecs = PCAP_POLL_INTERVAL;
}
#endif
#endif
/* We cast to unsigned because we want -1 to be very high (since it means
no timeout) */
combined_msecs = MIN((unsigned) event_msecs, (unsigned) msec_timeout);
/* printf("wait_for_events: starting wait -- combined_msecs=%d\n", combined_msecs); */
/* Set up the timeval pointer we will give to select() */
memset(&select_tv, 0, sizeof(select_tv));
if (combined_msecs > 0) {
select_tv.tv_sec = combined_msecs / 1000;
select_tv.tv_usec = (combined_msecs % 1000) * 1000;
select_tv_p = &select_tv;
} else if (combined_msecs == 0) {
/* we want the tv_sec and tv_usec to be zero -- but they already are from
bzero */
select_tv_p = &select_tv;
} else {
assert(combined_msecs == -1);
select_tv_p = NULL;
}
#if HAVE_PCAP
/* do non-blocking read on pcap devices that doesn't support select()
* If there is anything read, don't do usleep() or select(), just leave this loop */
if (pcap_read_on_nonselect(ms)) {
/* okay, something was read. */
} else
#endif
{
/* Set up the descriptors for select */
ms->mioi.fds_results_r = ms->mioi.fds_master_r;
ms->mioi.fds_results_w = ms->mioi.fds_master_w;
ms->mioi.fds_results_x = ms->mioi.fds_master_x;
ms->mioi.results_left = fselect(ms->mioi.max_sd + 1, &ms->mioi.fds_results_r, &ms->mioi.fds_results_w, &ms->mioi.fds_results_x, select_tv_p);
if (ms->mioi.results_left == -1)
sock_err = socket_errno();
}
gettimeofday(&nsock_tod, NULL); /* Due to usleep or select delay */
} while (ms->mioi.results_left == -1 && sock_err == EINTR); // repeat only if signal occured
if (ms->mioi.results_left == -1 && sock_err != EINTR) {
nsock_trace(ms, "nsock_loop error %d: %s", sock_err, socket_strerror(sock_err));
ms->errnum = sock_err;
return -1;
}
return 0;
}
/* A handler function is defined for each of the main event types
(read, write, connect, timer, etc) -- the handler is called when
new information is available for the event. The handler makes
any neccessary updates to the event based on any new information
available. If the event becomes ready for delivery, the handler
sets nse->event_done and fills out the relevant event fields
(status, errnum) as applicable. The handlers also take care of
event type specific teardown (such as clearing socket descriptors
from select/poll lists). If event_done is not set, the handler
will be called again in the case of more information or an event
timeout */
/* The event type handlers -- the first three arguments of each are the same:
mspool *ms
msevent *nse -- the event we have new info on
enum nse_status -- The reason for the call, usually NSE_STATUS_SUCCESS
(which generally means a successful I/O call or
NSE_STATUS_TIMEOUT or NSE_STATUS_CANCELLED
Some of the event type handlers have other parameters, specific
to their needs. All the handlers can assume that the calling
function has checked that select or poll said their descriptors
were readable/writeable (as appropriate).
The idea is that each handler will take care of the stuff that is
specific to it and the calling function will handle the stuff that
can be generalized to dispatching/deleting/etc. all events. But the
calling function may use type-specific info to determine whether
the handler should be called at all (to save CPU time).
*/
/* handle_connect_results assumes that select or poll have already
shown the descriptor to be active */
void handle_connect_result(mspool *ms, msevent *nse,
enum nse_status status)
{
int optval;
socklen_t optlen = sizeof(int);
char buf[1024];
msiod *iod = nse->iod;
#if HAVE_OPENSSL
int sslerr;
int sslconnect_inprogress = nse->type == NSE_TYPE_CONNECT_SSL && nse->iod &&
(nse->sslinfo.ssl_desire == SSL_ERROR_WANT_READ ||
nse->sslinfo.ssl_desire == SSL_ERROR_WANT_WRITE);
#else
int sslconnect_inprogress = 0;
#endif
int rc;
rc = 0;
if (status == NSE_STATUS_TIMEOUT || status == NSE_STATUS_CANCELLED) {
nse->status = status;
nse->event_done = 1;
} else if (sslconnect_inprogress) {
/* Do nothing */
} else if (status == NSE_STATUS_SUCCESS) {
/* First we want to determine whether the socket really is connected */
if (getsockopt(iod->sd, SOL_SOCKET, SO_ERROR, (char *) &optval, &optlen) != 0)
optval = socket_errno(); /* Stupid Solaris */
switch(optval) {
case 0:
nse->status = NSE_STATUS_SUCCESS;
break;
case ECONNREFUSED:
case EHOSTUNREACH:
case ENETDOWN:
case ENETUNREACH:
case ENETRESET:
case ECONNABORTED:
case ETIMEDOUT:
case EHOSTDOWN:
case ECONNRESET:
#ifdef WIN32
case WSAEADDRNOTAVAIL:
case WSAEACCES: /* Can happen when Windows Firewall blocks a port. */
#endif
#ifndef WIN32
case EPIPE: /* Has been seen after connect on Linux. */
case ENOPROTOOPT: /* Also seen on Linux, perhaps in response to protocol unreachable. */
#endif
nse->status = NSE_STATUS_ERROR;
nse->errnum = optval;
break;
default:
Snprintf(buf, sizeof(buf), "Strange connect error from %s (%d)", inet_ntop_ez(&iod->peer, iod->peerlen), optval);
perror(buf);
assert(0); /* I'd like for someone to report it */
break;
}
/* Now special code for the SSL case where the TCP connection was successful. */
if (nse->type == NSE_TYPE_CONNECT_SSL &&
nse->status == NSE_STATUS_SUCCESS) {
#if HAVE_OPENSSL
assert(ms->sslctx != NULL);
/* Reuse iod->ssl if present. If set, this is the second try at connection
without the SSL_OP_NO_SSLv2 option set. */
if (iod->ssl == NULL) {
iod->ssl = SSL_new(ms->sslctx);
if (!iod->ssl)
fatal("SSL_new failed: %s", ERR_error_string(ERR_get_error(), NULL));
}
if (iod->hostname != NULL) {
#if HAVE_SSL_SET_TLSEXT_HOST_NAME
if (SSL_set_tlsext_host_name(iod->ssl, iod->hostname) != 1)
fatal("SSL_set_tlsext_host_name failed: %s", ERR_error_string(ERR_get_error(), NULL));
#endif
}
/* Associate our new SSL with the connected socket. It will inherit
the non-blocking nature of the sd */
if (SSL_set_fd(iod->ssl, iod->sd) != 1) {
fatal("SSL_set_fd failed: %s", ERR_error_string(ERR_get_error(), NULL));
}
/* Event not done -- need to do SSL connect below */
nse->sslinfo.ssl_desire = SSL_ERROR_WANT_CONNECT;
#endif
} else {
/* This is not an SSL connect (in which case we are always done), or
the TCP connect() underlying the SSL failed (in which case we are also
done */
nse->event_done = 1;
}
} else {
assert(0); /* Currently we only know about TIMEOUT and SUCCESS callbacks */
}
/* At this point the TCP connection is done, whether successful or not.
Therefore decrease the read/write listen counts that were incremented in
nsp_add_event. In the SSL case, we may increase one of the counts depending
on whether SSL_connect returns an error of SSL_ERROR_WANT_READ or
SSL_ERROR_WANT_WRITE. In that case we will re-enter this function, but we
don't want to execute this block again. */
if (iod->sd != -1 && !sslconnect_inprogress) {
socket_count_read_dec(iod, ms);
socket_count_write_dec(iod, ms);
CHECKED_FD_CLR(iod->sd, &ms->mioi.fds_master_x);
}
#if HAVE_OPENSSL
if (nse->type == NSE_TYPE_CONNECT_SSL && !nse->event_done) {
/* Lets now start/continue/finish the connect! */
if (iod->ssl_session) {
rc = SSL_set_session(iod->ssl, iod->ssl_session);
if (rc == 0)
printf("Uh-oh: SSL_set_session() failed - please tell Fyodor\n");
iod->ssl_session = NULL; /* No need for this any more */
}
/* If this is a reinvocation of handle_connect_result, clear out the listen
bits that caused it, based on the previous SSL desire. */
if (sslconnect_inprogress)
socket_count_dec_ssl_desire(nse, ms);
rc = SSL_connect(iod->ssl);
/* printf("DBG: SSL_connect()=%d", rc); */
if (rc == 1) {
/* Woop! Connect is done! */
nse->event_done = 1;
/* Check that certificate verification was okay, if requested. */
if (nsi_ssl_post_connect_verify(iod)) {
nse->status = NSE_STATUS_SUCCESS;
} else {
if (ms->tracelevel > 0) {
nsock_trace(ms, "certificate verification error for EID %li: %s",
nse->id, ERR_error_string(ERR_get_error(), NULL));
}
nse->status = NSE_STATUS_ERROR;
}
} else {
long options = SSL_get_options(iod->ssl);
sslerr = SSL_get_error(iod->ssl, rc);
if (rc == -1 && sslerr == SSL_ERROR_WANT_READ) {
nse->sslinfo.ssl_desire = sslerr;
socket_count_read_inc(iod, ms);
} else if (rc == -1 && sslerr == SSL_ERROR_WANT_WRITE) {
nse->sslinfo.ssl_desire = sslerr;
socket_count_write_inc(iod, ms);
} else if (!(options & SSL_OP_NO_SSLv2)) {
/* SSLv3-only and TLSv1-only servers can't be connected to when the
SSL_OP_NO_SSLv2 option is not set, which is the case when the pool
was initialized with nsp_ssl_init_max_speed. Try reconnecting with
SSL_OP_NO_SSLv2. Never downgrade a NO_SSLv2 connection to one that
might use SSLv2. */
if (ms->tracelevel > 0)
nsock_trace(ms, "EID %li reconnecting with SSL_OP_NO_SSLv2", nse->id);
close(iod->sd);
nsock_connect_internal(ms, nse, iod->lastproto, &iod->peer, iod->peerlen, nsi_peerport(iod));
SSL_clear(iod->ssl);
if(!SSL_clear(iod->ssl))
fatal("SSL_clear failed: %s", ERR_error_string(ERR_get_error(), NULL));
SSL_set_options(iod->ssl, options | SSL_OP_NO_SSLv2);
socket_count_read_inc(nse->iod, ms);
socket_count_write_inc(nse->iod, ms);
nse->sslinfo.ssl_desire = SSL_ERROR_WANT_CONNECT;
} else {
if (ms->tracelevel > 0)
nsock_trace(ms, "EID %li %s", nse->id, ERR_error_string(ERR_get_error(), NULL));
nse->event_done = 1;
nse->status = NSE_STATUS_ERROR;
nse->errnum = EIO;
}
}
}
#endif
return;
}
void handle_write_result(mspool *ms, msevent *nse,
enum nse_status status)
{
int bytesleft;
char *str;
int res;
int err;
msiod *iod = nse->iod;
if (status == NSE_STATUS_TIMEOUT || status == NSE_STATUS_CANCELLED) {
nse->event_done = 1;
nse->status = status;
} else if (status == NSE_STATUS_SUCCESS) {
str = FILESPACE_STR(&nse->iobuf) + nse->writeinfo.written_so_far;
bytesleft = FILESPACE_LENGTH(&nse->iobuf) - nse->writeinfo.written_so_far;
if (nse->writeinfo.written_so_far > 0)
assert(bytesleft > 0);
#if HAVE_OPENSSL
if (iod->ssl)
res = SSL_write(iod->ssl, str, bytesleft);
else
#endif
if (nse->writeinfo.dest.ss_family == AF_UNSPEC )
res = send(nse->iod->sd, str, bytesleft, 0);
else
res = sendto(nse->iod->sd, str, bytesleft, 0, (struct sockaddr *)&nse->writeinfo.dest, (int) nse->writeinfo.destlen);
if (res == bytesleft) {
nse->event_done = 1;
nse->status = NSE_STATUS_SUCCESS;
} else if (res >= 0) {
nse->writeinfo.written_so_far += res;
} else {
assert(res == -1);
if (iod->ssl) {
#if HAVE_OPENSSL
err = SSL_get_error(iod->ssl, res);
if (err == SSL_ERROR_WANT_READ) {
socket_count_dec_ssl_desire(nse, ms);
socket_count_read_inc(iod, ms);
nse->sslinfo.ssl_desire = err;
} else if (err == SSL_ERROR_WANT_WRITE) {
socket_count_dec_ssl_desire(nse, ms);
socket_count_write_inc(iod, ms);
nse->sslinfo.ssl_desire = err;
} else {
/* Unexpected error */
nse->event_done = 1;
nse->status = NSE_STATUS_ERROR;
nse->errnum = EIO;
}
#endif
} else {
err = socket_errno();
if (err != EINTR && err != EAGAIN
#ifndef WIN32
&& err != EBUSY
#endif
) {
nse->event_done = 1;
nse->status = NSE_STATUS_ERROR;
nse->errnum = err;
}
}
}
nse->iod->write_count+= res;
}
if (nse->event_done && nse->iod->sd != -1) {
#if HAVE_OPENSSL
if (nse->iod->ssl != NULL)
socket_count_dec_ssl_desire(nse, ms);
else
#endif
socket_count_write_dec(nse->iod, ms);
}
return;
}
void handle_timer_result(mspool *ms, msevent *nse,
enum nse_status status)
{
/* Ooh this is a hard job :) */
nse->event_done = 1;
nse->status = status;
return;
}
/* Returns -1 if an error, otherwise the number of newly written bytes */
static int do_actual_read(mspool *ms, msevent *nse) {
char buf[8192];
int buflen = 0;
msiod *iod = nse->iod;
int err = 0;
int max_chunk = NSOCK_READ_CHUNK_SIZE;
int startlen = FILESPACE_LENGTH(&nse->iobuf);
if (nse->readinfo.read_type == NSOCK_READBYTES)
max_chunk = nse->readinfo.num;
if (!iod->ssl) {
do {
struct sockaddr_storage peer;
socklen_t peerlen;
peerlen = sizeof(peer);
buflen = recvfrom(iod->sd, buf, sizeof(buf), 0, (struct sockaddr *) &peer, &peerlen);
/* Using recv() was failing, at least on UNIX, for non-network sockets
(i.e. stdin) in this case, a read() is done - as on ENOTSOCK we may
have a non-network socket */
if (buflen == -1) {
if (socket_errno() == ENOTSOCK) {
peer.ss_family = AF_UNSPEC;
peerlen = 0;
buflen = read(iod->sd, buf, sizeof(buf));
}
}
if (buflen == -1) {
err = socket_errno();
break;
}
if (peerlen > 0) {
assert(peerlen <= sizeof(iod->peer));
memcpy(&iod->peer, &peer, peerlen);
iod->peerlen = peerlen;
}
if (buflen > 0) {
if (fscat(&nse->iobuf, buf, buflen) == -1) {
nse->event_done = 1;
nse->status = NSE_STATUS_ERROR;
nse->errnum = ENOMEM;
return -1;
}
/* Sometimes a service just spews and spews data. So we return
* after a somewhat large amount to avoid monopolizing resources
* and avoid DOS attacks. */
if (FILESPACE_LENGTH(&nse->iobuf) > max_chunk)
return FILESPACE_LENGTH(&nse->iobuf) - startlen;
/* No good reason to read again if we we were successful in the read but
* didn't fill up the buffer. Espcecially for UDP, where we want to
* return only one datagram at a time. The consistency of the above
* assignment of iod->peer depends on not consolidating more than one
* UDP read buffer. */
if (buflen > 0 && buflen < sizeof(buf))
return FILESPACE_LENGTH(&nse->iobuf) - startlen;
}
} while (buflen > 0 || (buflen == -1 && err == EINTR));
if (buflen == -1) {
if (err != EINTR && err != EAGAIN) {
nse->event_done = 1;
nse->status = NSE_STATUS_ERROR;
nse->errnum = err;
return -1;
}
}
} else {
#if HAVE_OPENSSL
/* OpenSSL read */
while ((buflen = SSL_read(iod->ssl, buf, sizeof(buf))) > 0) {
if (fscat(&nse->iobuf, buf, buflen) == -1) {
nse->event_done = 1;
nse->status = NSE_STATUS_ERROR;
nse->errnum = ENOMEM;
return -1;
}
/* Sometimes a service just spews and spews data. So we return
* after a somewhat large amount to avoid monopolizing resources
* and avoid DOS attacks. */
if (FILESPACE_LENGTH(&nse->iobuf) > max_chunk)
return FILESPACE_LENGTH(&nse->iobuf) - startlen;
}
if (buflen == -1) {
err = SSL_get_error(iod->ssl, buflen);
if (err == SSL_ERROR_WANT_READ) {
socket_count_dec_ssl_desire(nse, ms);
socket_count_read_inc(iod, ms);
nse->sslinfo.ssl_desire = err;
} else if (err == SSL_ERROR_WANT_WRITE ) {
socket_count_dec_ssl_desire(nse, ms);
socket_count_write_inc(iod, ms);
nse->sslinfo.ssl_desire = err;
} else {
/* Unexpected error */
nse->event_done = 1;
nse->status = NSE_STATUS_ERROR;
nse->errnum = EIO;
if (ms->tracelevel > 2)
nsock_trace(ms, "SSL_read() failed for reason %s on NSI %li",
ERR_reason_error_string(err), iod->id);
return -1;
}
}
#endif /* HAVE_OPENSSL */
}
if (buflen == 0) {
nse->event_done = 1;
nse->eof = 1;
if (FILESPACE_LENGTH(&nse->iobuf) > 0) {
nse->status = NSE_STATUS_SUCCESS;
return FILESPACE_LENGTH(&nse->iobuf) - startlen;
} else {
nse->status = NSE_STATUS_EOF;
return 0;
}
}
return FILESPACE_LENGTH(&nse->iobuf) - startlen;
}
void handle_read_result(mspool *ms, msevent *nse,
enum nse_status status)
{
unsigned int count;
char *str;
int rc, len;
msiod *iod = nse->iod;
if (status == NSE_STATUS_TIMEOUT) {
nse->event_done = 1;
if (FILESPACE_LENGTH(&nse->iobuf) > 0) {
nse->status = NSE_STATUS_SUCCESS;
} else {
nse->status = NSE_STATUS_TIMEOUT;
}
} else if (status == NSE_STATUS_CANCELLED) {
nse->status = status;
nse->event_done = 1;
} else if (status == NSE_STATUS_SUCCESS) {
rc = do_actual_read(ms, nse);
/* printf("DBG: Just read %d new bytes%s.\n", rc, iod->ssl? "( SSL!)" : ""); */
if (rc > 0) {
nse->iod->read_count += rc;
/* We decide whether we have read enough to return */
switch(nse->readinfo.read_type) {
case NSOCK_READ:
nse->status = NSE_STATUS_SUCCESS;
nse->event_done = 1;
break;
case NSOCK_READBYTES:
if (FILESPACE_LENGTH(&nse->iobuf) >= nse->readinfo.num) {
nse->status = NSE_STATUS_SUCCESS;
nse->event_done = 1;
}
/* else we are not done */
break;
case NSOCK_READLINES:
/* Lets count the number of lines we have ... */
count = 0;
len = FILESPACE_LENGTH(&nse->iobuf) -1;
str = FILESPACE_STR(&nse->iobuf);
for(count=0; len >= 0; len--) {
if (str[len] == '\n') {
count++;
if ((int) count >= nse->readinfo.num)
break;
}
}
if ((int) count >= nse->readinfo.num) {
nse->event_done = 1;
nse->status = NSE_STATUS_SUCCESS;
}
/* Else we are not done */
break;
default:
assert(0);
break; /* unreached */
}
}
} else {
assert(0); /* Currently we only know about TIMEOUT, CANCELLED, and SUCCESS callbacks */
}
/* If there are no more reads for this IOD, we are done reading on the socket
so we can take it off the descriptor list ... */
if (nse->event_done && iod->sd >= 0) {
#if HAVE_OPENSSL
if (nse->iod->ssl != NULL)
socket_count_dec_ssl_desire(nse, ms);
else
#endif
socket_count_read_dec(nse->iod, ms);
}
return;
}
#if HAVE_PCAP
void handle_pcap_read_result(mspool *ms, msevent *nse,
enum nse_status status)
{
msiod *iod = nse->iod;
mspcap *mp = (mspcap *) iod->pcap;
if (status == NSE_STATUS_TIMEOUT) {
nse->status = NSE_STATUS_TIMEOUT;
nse->event_done = 1;
} else if (status == NSE_STATUS_CANCELLED) {
nse->status = NSE_STATUS_CANCELLED;
nse->event_done = 1;
} else if (status == NSE_STATUS_SUCCESS) {
/* check if we already have something read */
if (FILESPACE_LENGTH(&(nse->iobuf)) == 0) {
nse->status = NSE_STATUS_TIMEOUT;
nse->event_done = 0;
} else {
nse->status = NSE_STATUS_SUCCESS; /* we have full buffer */
nse->event_done = 1;
}
} else {
assert(0); /* Currently we only know about TIMEOUT, CANCELLED, and SUCCESS callbacks */
}
/* If there are no more read events, we are done reading on the socket so
we can take it off the descriptor list ... */
if (nse->event_done && mp->pcap_desc >= 0)
socket_count_readpcap_dec(iod, ms);
return;
}
/* returns number of descriptors on which data was read */
static int pcap_read_on_nonselect(mspool *nsp) {
gh_list *event_list = &nsp->evl.pcap_read_events;
gh_list_elem *current, *next;
msevent *nse;
int rc;
int ret = 0;
for (current = GH_LIST_FIRST_ELEM(event_list); current != NULL; current = next) {
nse = (msevent *) GH_LIST_ELEM_DATA(current);
rc = do_actual_pcap_read(nse);
if (rc == 1) { /* something received */
ret++;
break;
}
next = GH_LIST_ELEM_NEXT(current);
}
return(ret);
}
#endif // HAVE_PCAP
/* Iterate through all the event lists (such as connect_events, read_events,
timer_events, etc) and take action for those that have completed (due to
timeout, i/o, etc) */
static void iterate_through_event_lists(mspool *nsp) {
gh_list_elem *current, *next, *prev, *last;
msevent *nse;
int match_r = 0, match_w = 0;
#if HAVE_OPENSSL
int desire_r = 0, desire_w = 0;
#endif
gh_list *event_lists[] = { &nsp->evl.connect_events,
&nsp->evl.read_events,
&nsp->evl.write_events,
&nsp->evl.timer_events,
#if HAVE_PCAP
&nsp->evl.pcap_read_events,
#endif
0
};
int current_list_idx;
nsp->evl.next_ev.tv_sec = 0; /* Clear it -- We will find the next
event as we go through the list */
/* We keep the events seperate because we want to handle them in the
order: connect => read => write => timer for several reasons:
1) Makes sure we have gone through all the net i/o events before
a timer expires (would be a shame to timeout after the data was
available but before we delivered the events
2) The connect() results often lead to a read or write that can be
processed in the same cycle. In the same way, read() often
leads to write().
*/
/* foreach list */
if (nsp->tracelevel > 7){
for(current_list_idx = 0; event_lists[current_list_idx] != NULL;
current_list_idx++) {
nsock_trace(nsp, "before iterating, list %i", current_list_idx);
for(current = GH_LIST_FIRST_ELEM(event_lists[current_list_idx]);
current != NULL; current = GH_LIST_ELEM_NEXT(current)) {
nse = (msevent *) GH_LIST_ELEM_DATA(current);
nsock_trace(nsp, "before iterating %lu",nse->id);
}
}
}
/* foreach list */
for(current_list_idx = 0; event_lists[current_list_idx] != NULL;
current_list_idx++) {
/* Remember the last element and don't look past it. This is because, for
example, handling a read event may add another read event to the end of
the list, which then adds another, and so on. */
last = GH_LIST_LAST_ELEM(event_lists[current_list_idx]);
/* foreach element in the list */
for (prev = NULL, current = GH_LIST_FIRST_ELEM(event_lists[current_list_idx]);
current != NULL && prev != last;
prev = current, current = next) {
nse = (msevent *) GH_LIST_ELEM_DATA(current);
if (nsp->tracelevel > 7)
nsock_trace(nsp, "list %i, iterating %lu",current_list_idx, nse->id);
if (!nse->event_done) {
switch(nse->type) {
case NSE_TYPE_CONNECT:
case NSE_TYPE_CONNECT_SSL:
if (FD_ISSET(nse->iod->sd, &nsp->mioi.fds_results_r) ||
FD_ISSET(nse->iod->sd, &nsp->mioi.fds_results_w) ||
FD_ISSET(nse->iod->sd, &nsp->mioi.fds_results_x)) {
handle_connect_result(nsp, nse, NSE_STATUS_SUCCESS);
}
if (!nse->event_done && nse->timeout.tv_sec &&
!TIMEVAL_AFTER(nse->timeout, nsock_tod)) {
handle_connect_result(nsp, nse, NSE_STATUS_TIMEOUT);
}
break;
case NSE_TYPE_READ:
match_r = FD_ISSET(nse->iod->sd, &nsp->mioi.fds_results_r);
match_w = FD_ISSET(nse->iod->sd, &nsp->mioi.fds_results_w);
#if HAVE_OPENSSL
desire_r = nse->sslinfo.ssl_desire == SSL_ERROR_WANT_READ;
desire_w = nse->sslinfo.ssl_desire == SSL_ERROR_WANT_WRITE;
if (nse->iod->ssl && ((desire_r && match_r) || (desire_w && match_w)))
handle_read_result(nsp, nse, NSE_STATUS_SUCCESS);
else
#endif
if (!nse->iod->ssl && match_r)
handle_read_result(nsp, nse, NSE_STATUS_SUCCESS);
if (!nse->event_done && nse->timeout.tv_sec &&
!TIMEVAL_AFTER(nse->timeout, nsock_tod)) {
handle_read_result(nsp, nse, NSE_STATUS_TIMEOUT);
}
break;
case NSE_TYPE_WRITE:
match_r = FD_ISSET(nse->iod->sd, &nsp->mioi.fds_results_r);
match_w = FD_ISSET(nse->iod->sd, &nsp->mioi.fds_results_w);
#if HAVE_OPENSSL
desire_r = nse->sslinfo.ssl_desire == SSL_ERROR_WANT_READ;
desire_w = nse->sslinfo.ssl_desire == SSL_ERROR_WANT_WRITE;
if (nse->iod->ssl && ((desire_r && match_r) ||
(desire_w && match_w)))
handle_write_result(nsp, nse, NSE_STATUS_SUCCESS);
else
#endif
if (!nse->iod->ssl && match_w)
handle_write_result(nsp, nse, NSE_STATUS_SUCCESS);
if (!nse->event_done && nse->timeout.tv_sec &&
!TIMEVAL_AFTER(nse->timeout, nsock_tod)) {
handle_write_result(nsp, nse, NSE_STATUS_TIMEOUT);
}
break;
case NSE_TYPE_TIMER:
if (nse->timeout.tv_sec &&
!TIMEVAL_AFTER(nse->timeout, nsock_tod)) {
handle_timer_result(nsp, nse, NSE_STATUS_SUCCESS);
}
break;
#if HAVE_PCAP
case NSE_TYPE_PCAP_READ:{
if (nsp->tracelevel > 5)
nsock_trace(nsp, "PCAP iterating %lu",nse->id);
#ifdef PCAP_CAN_DO_SELECT
match_r = FD_ISSET(((mspcap *) nse->iod->pcap)->pcap_desc, &nsp->mioi.fds_results_r);
if (match_r)
#endif
{
/* buffer empty? check it! */
if ( FILESPACE_LENGTH(&(nse->iobuf))==0 )
do_actual_pcap_read(nse);
}
/* if already received smth */
if ( FILESPACE_LENGTH(&(nse->iobuf))>0 )
handle_pcap_read_result(nsp, nse, NSE_STATUS_SUCCESS);
if (!nse->event_done && nse->timeout.tv_sec &&
!TIMEVAL_AFTER(nse->timeout, nsock_tod))
handle_pcap_read_result(nsp, nse, NSE_STATUS_TIMEOUT);
#if PCAP_BSD_SELECT_HACK
/* If event occured, and we're in BSD_HACK mode, than this event was added
* to two queues. evl.read_event and evl.pcap_read_event
* Of coure we should destroy it only once.
* I assume we're now in evl.read_event, co just unlink this event from
* evl.pcap_read_event */
if (((mspcap *) nse->iod->pcap)->pcap_desc >= 0 &&
nse->event_done &&
event_lists[current_list_idx] == &nsp->evl.read_events) {
/* event is done, list is read_events and we're in BSD_HACK mode.
* So unlink event from pcap_read_events */
gh_list_remove(&nsp->evl.pcap_read_events, nse);
if (nsp->tracelevel > 8)
nsock_trace(nsp, "PCAP NSE #%lu: Removing event from PCAP_READ_EVENTS", nse->id);
}
if (((mspcap *) nse->iod->pcap)->pcap_desc >= 0 &&
nse->event_done &&
event_lists[current_list_idx] == &nsp->evl.pcap_read_events) {
gh_list_remove(&nsp->evl.read_events, nse);
if (nsp->tracelevel > 8)
nsock_trace(nsp, "PCAP NSE #%lu: Removing event from READ_EVENTS", nse->id);
}
#endif
break;
}
#endif
default:
fatal("Event has unknown type (%d)", nse->type);
break; /* unreached */
}
}
if (nse->event_done) {
/* Security sanity check: don't return a functional SSL iod without
setting an SSL data structure. */
if (nse->type == NSE_TYPE_CONNECT_SSL && nse->status == NSE_STATUS_SUCCESS)
assert(nse->iod->ssl != NULL);
if (nsp->tracelevel > 8)
nsock_trace(nsp, "NSE #%lu: Removing event from event_lists[%i]", nse->id, current_list_idx);
/* WooHoo! The event is ready to be sent */
msevent_dispatch_and_delete(nsp, nse, 1);
next = GH_LIST_ELEM_NEXT(current);
gh_list_remove_elem(event_lists[current_list_idx], current);
} else {
next = GH_LIST_ELEM_NEXT(current);
/* Is this event the next-to-timeout? */
if (nse->timeout.tv_sec != 0) {
if (nsp->evl.next_ev.tv_sec == 0)
nsp->evl.next_ev = nse->timeout;
else if (TIMEVAL_AFTER(nsp->evl.next_ev, nse->timeout))
nsp->evl.next_ev = nse->timeout;
}
}
}
}
}
/* Here is the all important looping function that tells the event
engine to start up and begin processing events. It will continue
until all events have been delivered (including new ones started
from event handlers), or the msec_timeout is reached, or a major
error has occured. Use -1 if you don't want to set a maximum time
for it to run. A timeout of 0 will return after 1 non-blocking
loop. The nsock loop can be restarted again after it returns. For
example you could do a series of 15 second runs, allowing you to do
other stuff between them */
enum nsock_loopstatus nsock_loop(nsock_pool nsp, int msec_timeout) {
mspool *ms = (mspool *) nsp;
struct timeval loop_timeout;
int msecs_left;
unsigned long loopnum = 0;
enum nsock_loopstatus quitstatus = NSOCK_LOOP_ERROR;
gettimeofday(&nsock_tod, NULL);
if (msec_timeout < -1) {
ms->errnum = EINVAL;
return NSOCK_LOOP_ERROR;
}
TIMEVAL_MSEC_ADD(loop_timeout, nsock_tod, msec_timeout);
msecs_left = msec_timeout;
if (ms->tracelevel > 2) {
if (msec_timeout >= 0) {
nsock_trace(ms, "nsock_loop() started (timeout=%dms). %d events pending",
msec_timeout, ms->evl.events_pending);
} else {
nsock_trace(ms, "nsock_loop() started (no timeout). %d events pending",
ms->evl.events_pending);
}
}
while (1) {
if (ms->quit) {
/* We've been asked to quit the loop through nsock_loop_quit. */
ms->quit = 0;
quitstatus = NSOCK_LOOP_QUIT;
break;
}
if (ms->evl.events_pending == 0) {
/* if no events at all are pending, then none can be created until
we quit nsock_loop() -- so we do that now. */
quitstatus = NSOCK_LOOP_NOEVENTS;
break;
}
if (msec_timeout >= 0) {
msecs_left = MAX(0, TIMEVAL_MSEC_SUBTRACT(loop_timeout, nsock_tod));
if (msecs_left == 0 && loopnum > 0) {
quitstatus = NSOCK_LOOP_TIMEOUT;
break;
}
}
if (wait_for_events(ms, msecs_left) == -1) {
quitstatus = NSOCK_LOOP_ERROR;
break;
}
/* Now we go through the event lists, doing callbacks for those which
have completed */
iterate_through_event_lists(ms);
gettimeofday(&nsock_tod, NULL); /* we do this at end because there is one
at beginning of function */
loopnum++;
}
return quitstatus;
}
/* Calling this function will cause nsock_loop to quit on its next iteration
with a return value of NSOCK_LOOP_QUIT. */
void nsock_loop_quit(nsock_pool nsp) {
mspool *ms = (mspool *) nsp;
ms->quit = 1;
}
/* Grab the latest time as recorded by the nsock library, which does
so at least once per event loop (in main_loop). Not only does this
function (generally) avoid a system call, but in many circumstances
it is better to use nsock's time rather than the system time. If
nsock has never obtained the time when you call it, it will do so
before returning */
const struct timeval *nsock_gettimeofday() {
if (nsock_tod.tv_sec == 0)
gettimeofday(&nsock_tod, NULL);
return &nsock_tod;
}
/* Adds an event to the appropriate nsp event list, handles housekeeping
such as adjusting the descriptor select/poll lists, registering the
timeout value, etc. */
void nsp_add_event(mspool *nsp, msevent *nse) {
if (nsp->tracelevel > 5)
nsock_trace(nsp, "NSE #%lu: Adding event", nse->id);
/* First lets do the event-type independant stuff -- starting with
timeouts */
if (nse->event_done) {
nsp->evl.next_ev = nsock_tod;
} else {
if (nse->timeout.tv_sec != 0) {
if (nsp->evl.next_ev.tv_sec == 0) {
nsp->evl.next_ev = nse->timeout;
} else if (TIMEVAL_AFTER(nsp->evl.next_ev, nse->timeout)) {
nsp->evl.next_ev = nse->timeout;
}
}
}
nsp->evl.events_pending++;
/* Now we do the event type specific actions */
switch(nse->type) {
case NSE_TYPE_CONNECT:
case NSE_TYPE_CONNECT_SSL:
if (!nse->event_done) {
assert(nse->iod->sd >= 0);
socket_count_read_inc(nse->iod, nsp);
socket_count_write_inc(nse->iod, nsp);
CHECKED_FD_SET( nse->iod->sd, &nsp->mioi.fds_master_x);
nsp->mioi.max_sd = MAX(nsp->mioi.max_sd, nse->iod->sd);
}
gh_list_append(&nsp->evl.connect_events, nse);
break;
case NSE_TYPE_READ:
if (!nse->event_done) {
assert(nse->iod->sd >= 0);
socket_count_read_inc(nse->iod, nsp);
#if HAVE_OPENSSL
if (nse->iod->ssl) nse->sslinfo.ssl_desire = SSL_ERROR_WANT_READ;
#endif
}
gh_list_append(&nsp->evl.read_events, nse);
break;
case NSE_TYPE_WRITE:
if (!nse->event_done) {
assert(nse->iod->sd >= 0);
socket_count_write_inc(nse->iod, nsp);
#if HAVE_OPENSSL
if (nse->iod->ssl) nse->sslinfo.ssl_desire = SSL_ERROR_WANT_WRITE;
#endif
}
gh_list_append(&nsp->evl.write_events, nse);
break;
case NSE_TYPE_TIMER:
gh_list_append(&nsp->evl.timer_events, nse);
break;
#if HAVE_PCAP
case NSE_TYPE_PCAP_READ:{
mspcap *mp = (mspcap *) nse->iod->pcap;
assert(mp);
if(mp->pcap_desc >= 0){ /* pcap descriptor present */
if(!nse->event_done)
socket_count_readpcap_inc(nse->iod, nsp);
if (nsp->tracelevel > 8)
nsock_trace(nsp, "PCAP NSE #%lu: Adding event to READ_EVENTS", nse->id);
gh_list_append(&nsp->evl.read_events, nse);
#if PCAP_BSD_SELECT_HACK
/* when using BSD hack we must do pcap_next() after select().
* Let's insert this pcap to bot queues, to selectable and nonselectable.
* This will result in doing pcap_next_ex() just before select() */
if (nsp->tracelevel > 8)
nsock_trace(nsp, "PCAP NSE #%lu: Adding event to PCAP_READ_EVENTS", nse->id);
gh_list_append(&nsp->evl.pcap_read_events, nse);
#endif
}else{ /* pcap isn't selectable. Add it to pcap-specific queue. */
if (nsp->tracelevel > 8)
nsock_trace(nsp, "PCAP NSE #%lu: Adding event to PCAP_READ_EVENTS", nse->id);
gh_list_append(&nsp->evl.pcap_read_events, nse);
}
break;
}
#endif
default:
assert(0);
break; /* unreached */
}
}
void nsock_trace(mspool *ms, char *fmt, ...) {
va_list ap;
int elapsedTimeMS;
assert(ms->tracefile != NULL);
elapsedTimeMS = TIMEVAL_MSEC_SUBTRACT(nsock_tod, ms->tracebasetime);
va_start(ap, fmt);
fflush(ms->tracefile);
fprintf(ms->tracefile, "NSOCK (%.4fs) ", elapsedTimeMS / 1000.0);
vfprintf(ms->tracefile, fmt, ap);
fprintf(ms->tracefile, "\n");
va_end(ap);
return;
}
/* An event has been completed and the handler is about to be called. This
function writes out tracing data about the event if necessary */
void nsock_trace_handler_callback(mspool *ms, msevent *nse) {
msiod *nsi;
char *str;
int strlength = 0;
char displaystr[256];
char errstr[256];
if (ms->tracelevel == 0)
return;
nsi = nse->iod;
if (nse->status == NSE_STATUS_ERROR) {
Snprintf(errstr, sizeof(errstr), "[%s (%d)] ", strerror(nse->errnum), nse->errnum);
} else {
errstr[0] = '\0';
}
/* Some types have special tracing treatment */
switch(nse->type) {
case NSE_TYPE_CONNECT:
case NSE_TYPE_CONNECT_SSL:
nsock_trace(ms, "Callback: %s %s %sfor EID %li [%s:%hu]",
nse_type2str(nse->type), nse_status2str(nse->status), errstr,
nse->id, inet_ntop_ez(&nsi->peer, nsi->peerlen), nsi_peerport(nsi));
break;
case NSE_TYPE_READ:
if (nse->status != NSE_STATUS_SUCCESS) {
if (nsi->peerlen > 0) {
nsock_trace(ms, "Callback: %s %s %sfor EID %li [%s:%hu]",
nse_type2str(nse->type), nse_status2str(nse->status),
errstr, nse->id, inet_ntop_ez(&nsi->peer, nsi->peerlen),
nsi_peerport(nsi));
} else {
nsock_trace(ms, "Callback: %s %s %sfor EID %li (peer unspecified)",
nse_type2str(nse->type), nse_status2str(nse->status),
errstr, nse->id);
}
} else {
str = nse_readbuf(nse, &strlength);
if (ms->tracelevel > 1 && strlength < 80) {
memcpy(displaystr, ": ", 2);
memcpy(displaystr + 2, str, strlength);
displaystr[2 + strlength] = '\0';
replacenonprintable(displaystr + 2, strlength, '.');
} else {
displaystr[0] = '\0';
}
if (nsi->peerlen > 0) {
nsock_trace(ms, "Callback: %s %s for EID %li [%s:%hu] %s(%d bytes)%s",
nse_type2str(nse->type), nse_status2str(nse->status),
nse->id, inet_ntop_ez(&nsi->peer, nsi->peerlen),
nsi_peerport(nsi), nse_eof(nse)? "[EOF]" : "", strlength,
displaystr);
} else {
nsock_trace(ms, "Callback %s %s for EID %li (peer unspecified) %s(%d bytes)%s",
nse_type2str(nse->type), nse_status2str(nse->status),
nse->id, nse_eof(nse)? "[EOF]" : "", strlength, displaystr);
}
}
break;
case NSE_TYPE_WRITE:
nsock_trace(ms, "Callback: %s %s %sfor EID %li [%s:%hu]",
nse_type2str(nse->type), nse_status2str(nse->status), errstr,
nse->id, inet_ntop_ez(&nsi->peer, nsi->peerlen),
nsi_peerport(nsi));
break;
case NSE_TYPE_TIMER:
nsock_trace(ms, "Callback: %s %s %sfor EID %li",
nse_type2str(nse->type), nse_status2str(nse->status), errstr,
nse->id);
break;
#if HAVE_PCAP
case NSE_TYPE_PCAP_READ:
nsock_trace(ms, "Callback: %s %s %sfor EID %li ",
nse_type2str(nse->type), nse_status2str(nse->status),
errstr, nse->id);
break;
#endif
default:
assert(0);
break;
}
}