mirror of
https://github.com/sqlmapproject/sqlmap.git
synced 2025-12-08 21:51:29 +00:00
Update of 3rd party library chardet
This commit is contained in:
150
thirdparty/chardet/sbcharsetprober.py
vendored
150
thirdparty/chardet/sbcharsetprober.py
vendored
@@ -26,95 +26,107 @@
|
||||
# 02110-1301 USA
|
||||
######################### END LICENSE BLOCK #########################
|
||||
|
||||
import sys
|
||||
from . import constants
|
||||
from .charsetprober import CharSetProber
|
||||
from .compat import wrap_ord
|
||||
|
||||
SAMPLE_SIZE = 64
|
||||
SB_ENOUGH_REL_THRESHOLD = 1024
|
||||
POSITIVE_SHORTCUT_THRESHOLD = 0.95
|
||||
NEGATIVE_SHORTCUT_THRESHOLD = 0.05
|
||||
SYMBOL_CAT_ORDER = 250
|
||||
NUMBER_OF_SEQ_CAT = 4
|
||||
POSITIVE_CAT = NUMBER_OF_SEQ_CAT - 1
|
||||
#NEGATIVE_CAT = 0
|
||||
from .enums import CharacterCategory, ProbingState, SequenceLikelihood
|
||||
|
||||
|
||||
class SingleByteCharSetProber(CharSetProber):
|
||||
def __init__(self, model, reversed=False, nameProber=None):
|
||||
CharSetProber.__init__(self)
|
||||
self._mModel = model
|
||||
SAMPLE_SIZE = 64
|
||||
SB_ENOUGH_REL_THRESHOLD = 1024 # 0.25 * SAMPLE_SIZE^2
|
||||
POSITIVE_SHORTCUT_THRESHOLD = 0.95
|
||||
NEGATIVE_SHORTCUT_THRESHOLD = 0.05
|
||||
|
||||
def __init__(self, model, reversed=False, name_prober=None):
|
||||
super(SingleByteCharSetProber, self).__init__()
|
||||
self._model = model
|
||||
# TRUE if we need to reverse every pair in the model lookup
|
||||
self._mReversed = reversed
|
||||
self._reversed = reversed
|
||||
# Optional auxiliary prober for name decision
|
||||
self._mNameProber = nameProber
|
||||
self._name_prober = name_prober
|
||||
self._last_order = None
|
||||
self._seq_counters = None
|
||||
self._total_seqs = None
|
||||
self._total_char = None
|
||||
self._freq_char = None
|
||||
self.reset()
|
||||
|
||||
def reset(self):
|
||||
CharSetProber.reset(self)
|
||||
super(SingleByteCharSetProber, self).reset()
|
||||
# char order of last character
|
||||
self._mLastOrder = 255
|
||||
self._mSeqCounters = [0] * NUMBER_OF_SEQ_CAT
|
||||
self._mTotalSeqs = 0
|
||||
self._mTotalChar = 0
|
||||
self._last_order = 255
|
||||
self._seq_counters = [0] * SequenceLikelihood.get_num_categories()
|
||||
self._total_seqs = 0
|
||||
self._total_char = 0
|
||||
# characters that fall in our sampling range
|
||||
self._mFreqChar = 0
|
||||
self._freq_char = 0
|
||||
|
||||
def get_charset_name(self):
|
||||
if self._mNameProber:
|
||||
return self._mNameProber.get_charset_name()
|
||||
@property
|
||||
def charset_name(self):
|
||||
if self._name_prober:
|
||||
return self._name_prober.charset_name
|
||||
else:
|
||||
return self._mModel['charsetName']
|
||||
return self._model['charset_name']
|
||||
|
||||
def feed(self, aBuf):
|
||||
if not self._mModel['keepEnglishLetter']:
|
||||
aBuf = self.filter_without_english_letters(aBuf)
|
||||
aLen = len(aBuf)
|
||||
if not aLen:
|
||||
return self.get_state()
|
||||
for c in aBuf:
|
||||
order = self._mModel['charToOrderMap'][wrap_ord(c)]
|
||||
if order < SYMBOL_CAT_ORDER:
|
||||
self._mTotalChar += 1
|
||||
if order < SAMPLE_SIZE:
|
||||
self._mFreqChar += 1
|
||||
if self._mLastOrder < SAMPLE_SIZE:
|
||||
self._mTotalSeqs += 1
|
||||
if not self._mReversed:
|
||||
i = (self._mLastOrder * SAMPLE_SIZE) + order
|
||||
model = self._mModel['precedenceMatrix'][i]
|
||||
@property
|
||||
def language(self):
|
||||
if self._name_prober:
|
||||
return self._name_prober.language
|
||||
else:
|
||||
return self._model.get('language')
|
||||
|
||||
def feed(self, byte_str):
|
||||
if not self._model['keep_english_letter']:
|
||||
byte_str = self.filter_international_words(byte_str)
|
||||
if not byte_str:
|
||||
return self.state
|
||||
char_to_order_map = self._model['char_to_order_map']
|
||||
for i, c in enumerate(byte_str):
|
||||
# XXX: Order is in range 1-64, so one would think we want 0-63 here,
|
||||
# but that leads to 27 more test failures than before.
|
||||
order = char_to_order_map[c]
|
||||
# XXX: This was SYMBOL_CAT_ORDER before, with a value of 250, but
|
||||
# CharacterCategory.SYMBOL is actually 253, so we use CONTROL
|
||||
# to make it closer to the original intent. The only difference
|
||||
# is whether or not we count digits and control characters for
|
||||
# _total_char purposes.
|
||||
if order < CharacterCategory.CONTROL:
|
||||
self._total_char += 1
|
||||
if order < self.SAMPLE_SIZE:
|
||||
self._freq_char += 1
|
||||
if self._last_order < self.SAMPLE_SIZE:
|
||||
self._total_seqs += 1
|
||||
if not self._reversed:
|
||||
i = (self._last_order * self.SAMPLE_SIZE) + order
|
||||
model = self._model['precedence_matrix'][i]
|
||||
else: # reverse the order of the letters in the lookup
|
||||
i = (order * SAMPLE_SIZE) + self._mLastOrder
|
||||
model = self._mModel['precedenceMatrix'][i]
|
||||
self._mSeqCounters[model] += 1
|
||||
self._mLastOrder = order
|
||||
i = (order * self.SAMPLE_SIZE) + self._last_order
|
||||
model = self._model['precedence_matrix'][i]
|
||||
self._seq_counters[model] += 1
|
||||
self._last_order = order
|
||||
|
||||
if self.get_state() == constants.eDetecting:
|
||||
if self._mTotalSeqs > SB_ENOUGH_REL_THRESHOLD:
|
||||
cf = self.get_confidence()
|
||||
if cf > POSITIVE_SHORTCUT_THRESHOLD:
|
||||
if constants._debug:
|
||||
sys.stderr.write('%s confidence = %s, we have a'
|
||||
'winner\n' %
|
||||
(self._mModel['charsetName'], cf))
|
||||
self._mState = constants.eFoundIt
|
||||
elif cf < NEGATIVE_SHORTCUT_THRESHOLD:
|
||||
if constants._debug:
|
||||
sys.stderr.write('%s confidence = %s, below negative'
|
||||
'shortcut threshhold %s\n' %
|
||||
(self._mModel['charsetName'], cf,
|
||||
NEGATIVE_SHORTCUT_THRESHOLD))
|
||||
self._mState = constants.eNotMe
|
||||
charset_name = self._model['charset_name']
|
||||
if self.state == ProbingState.DETECTING:
|
||||
if self._total_seqs > self.SB_ENOUGH_REL_THRESHOLD:
|
||||
confidence = self.get_confidence()
|
||||
if confidence > self.POSITIVE_SHORTCUT_THRESHOLD:
|
||||
self.logger.debug('%s confidence = %s, we have a winner',
|
||||
charset_name, confidence)
|
||||
self._state = ProbingState.FOUND_IT
|
||||
elif confidence < self.NEGATIVE_SHORTCUT_THRESHOLD:
|
||||
self.logger.debug('%s confidence = %s, below negative '
|
||||
'shortcut threshhold %s', charset_name,
|
||||
confidence,
|
||||
self.NEGATIVE_SHORTCUT_THRESHOLD)
|
||||
self._state = ProbingState.NOT_ME
|
||||
|
||||
return self.get_state()
|
||||
return self.state
|
||||
|
||||
def get_confidence(self):
|
||||
r = 0.01
|
||||
if self._mTotalSeqs > 0:
|
||||
r = ((1.0 * self._mSeqCounters[POSITIVE_CAT]) / self._mTotalSeqs
|
||||
/ self._mModel['mTypicalPositiveRatio'])
|
||||
r = r * self._mFreqChar / self._mTotalChar
|
||||
if self._total_seqs > 0:
|
||||
r = ((1.0 * self._seq_counters[SequenceLikelihood.POSITIVE]) /
|
||||
self._total_seqs / self._model['typical_positive_ratio'])
|
||||
r = r * self._freq_char / self._total_char
|
||||
if r >= 1.0:
|
||||
r = 0.99
|
||||
return r
|
||||
|
||||
Reference in New Issue
Block a user