1
0
mirror of https://github.com/nmap/nmap.git synced 2025-12-06 12:41:29 +00:00
Files
nmap/liblua/lmem.c
batrick 7f5ec526fe Merge branch 'nse-lua53'
Lua 5.3 adds several awesome features of particular interest to nmap including
bitwise operators and integers, a utf8 library, and standard binary pack/unpack
functions.

In addition to adding Lua 5.3, this branch changes:

o Complete removal of the NSE bit library (in C), It has been replaced with
  a new Lua library wrapping Lua 5.3's bit-wise operators.

o Complete removal of the NSE bin library (in C). It has been replaced with a
  new Lua library wrapping Lua 5.3's string.pack|unpack functions.

o The bin.pack "B" format specifier (which has never worked correctly) is
  unimplemented.  All scripts/libraries which use it have been updated. Most
  usage of this option was to allow string based bit-wise operations which are no
  longer necessary now that Lua 5.3 provides integers and bit-wise operators.

o The base32/base64 libraries have been reimplemented using Lua 5.3's new
  bitwise operators. (This library was the main user of the bin.pack "B" format
  specifier.)

o A new "bits" library has been added for common bit hacks. Currently only has
  a reverse function.

Thanks to David Fifield, Daniel Miller, Jacek Wielemborek, and  Paulino
Calderon for testing this branch.
2016-07-02 17:02:27 +00:00

101 lines
2.6 KiB
C

/*
** $Id: lmem.c,v 1.91 2015/03/06 19:45:54 roberto Exp $
** Interface to Memory Manager
** See Copyright Notice in lua.h
*/
#define lmem_c
#define LUA_CORE
#include "lprefix.h"
#include <stddef.h>
#include "lua.h"
#include "ldebug.h"
#include "ldo.h"
#include "lgc.h"
#include "lmem.h"
#include "lobject.h"
#include "lstate.h"
/*
** About the realloc function:
** void * frealloc (void *ud, void *ptr, size_t osize, size_t nsize);
** ('osize' is the old size, 'nsize' is the new size)
**
** * frealloc(ud, NULL, x, s) creates a new block of size 's' (no
** matter 'x').
**
** * frealloc(ud, p, x, 0) frees the block 'p'
** (in this specific case, frealloc must return NULL);
** particularly, frealloc(ud, NULL, 0, 0) does nothing
** (which is equivalent to free(NULL) in ISO C)
**
** frealloc returns NULL if it cannot create or reallocate the area
** (any reallocation to an equal or smaller size cannot fail!)
*/
#define MINSIZEARRAY 4
void *luaM_growaux_ (lua_State *L, void *block, int *size, size_t size_elems,
int limit, const char *what) {
void *newblock;
int newsize;
if (*size >= limit/2) { /* cannot double it? */
if (*size >= limit) /* cannot grow even a little? */
luaG_runerror(L, "too many %s (limit is %d)", what, limit);
newsize = limit; /* still have at least one free place */
}
else {
newsize = (*size)*2;
if (newsize < MINSIZEARRAY)
newsize = MINSIZEARRAY; /* minimum size */
}
newblock = luaM_reallocv(L, block, *size, newsize, size_elems);
*size = newsize; /* update only when everything else is OK */
return newblock;
}
l_noret luaM_toobig (lua_State *L) {
luaG_runerror(L, "memory allocation error: block too big");
}
/*
** generic allocation routine.
*/
void *luaM_realloc_ (lua_State *L, void *block, size_t osize, size_t nsize) {
void *newblock;
global_State *g = G(L);
size_t realosize = (block) ? osize : 0;
lua_assert((realosize == 0) == (block == NULL));
#if defined(HARDMEMTESTS)
if (nsize > realosize && g->gcrunning)
luaC_fullgc(L, 1); /* force a GC whenever possible */
#endif
newblock = (*g->frealloc)(g->ud, block, osize, nsize);
if (newblock == NULL && nsize > 0) {
lua_assert(nsize > realosize); /* cannot fail when shrinking a block */
if (g->version) { /* is state fully built? */
luaC_fullgc(L, 1); /* try to free some memory... */
newblock = (*g->frealloc)(g->ud, block, osize, nsize); /* try again */
}
if (newblock == NULL)
luaD_throw(L, LUA_ERRMEM);
}
lua_assert((nsize == 0) == (newblock == NULL));
g->GCdebt = (g->GCdebt + nsize) - realosize;
return newblock;
}